>
AP EAMCET
>
Mathematics
List of top Mathematics Questions asked in AP EAMCET
A random variable \( X \) follows a Poisson distribution with mean 5. Find the probability that \( X3 \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Probability
If 5 letters are to be placed in 5-addressed envelopes, then the probability that at least one letter is placed in the wrongly addressed envelope is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Probability
In a regular hexagon \( ABCDEF \), if \( \overrightarrow{AB} = \mathbf{a} \) and \( \overrightarrow{BC} = \mathbf{b} \), then find \( \overrightarrow{FA} \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry and Vectors
In \( \triangle ABC \), given:
\[ a = 26, \quad b = 30, \quad \cos C = \frac{63}{65} \] Find \( c \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Geometry
Find the value of \( x \) satisfying:
\[ 1 + \sin x + \sin^2 x + \sin^3 x + \dots = 4 + 2\sqrt{3} \] where \( 0x\pi, x \neq \frac{\pi}{2} \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometric Identities
The coefficient of \( x^5 \) in the expansion of \( (3 + x + x^2)^6 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Binomial theorem
If the mean of the data 7, 8, 9, 7, 8, 7, \(\lambda\), 8 is 8, then the variance of the data:
AP EAMCET - 2024
AP EAMCET
Mathematics
Statistics
If \( AB = 2i + 3j - 6k \), \( BC = 6i - 2j + 3k \) are the vectors along two sides of a triangle ABC, then the perimeter of triangle ABC is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Vectors
In \( \triangle ABC \), \( (r_2 + r_3) \csc^2 \frac{A}{2} =\)
AP EAMCET - 2024
AP EAMCET
Mathematics
Some Properties of a Triangle
If \( 0<x<\frac{1}{2} \) and \( \alpha = \sin^{-1} x + \cos^{-1} \left(\frac{x}{2} +\frac{\sqrt{3} - 3x^2}{2} \right) \), then \( \tan \alpha + \cot \alpha = \):
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometric Functions
Evaluate the sum:
\[ \tan^2 \frac{\pi}{16} + \tan^2 \frac{2\pi}{16} + \tan^2 \frac{3\pi}{16} + \tan^2 \frac{4\pi}{16} + \tan^2 \frac{5\pi}{16} + \tan^2 \frac{6\pi}{16} + \tan^2 \frac{7\pi}{16} \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Trigonometry
If
\(f(x) = \begin{cases} ax^2 + bx - \frac{13}{8}, & x \le 1 \\ 3x - 3, & 1<x \le 2 \\ bx^3 + 1, & x>2 \end{cases}\)
is differentiable \(\forall x \in \mathbb{R}\), then \( a - b = \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Continuity and differentiability
\[ f(x) = \begin{cases} \frac{x - |x|}{x}, & x \neq 0 \\[8pt] 2, & x = 0 \end{cases} \]
Which of the following is true for \( f(x) \)
AP EAMCET - 2024
AP EAMCET
Mathematics
Limits
Evaluate \( \int (\log x)^m x^n dx \).
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
If \[ \int \frac{\sqrt[4]{x}}{\sqrt{x} + \sqrt[4]{x}} \, dx = \frac{2}{3} \left[ A \sqrt[4]{x^3} + B \sqrt[4]{x^2} + C \sqrt[4]{x} + D \log \left( 1 + \sqrt[4]{x} \right) \right] + K \] then \( \frac{2}{3} (A + B + C + D) = \)}
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Evaluate the integral:
\[ \int \sin^{-1} \left( \sqrt{\frac{x - a}{x}} \right) dx \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Integration
Find the domain of \( f(x) \) given:
\[ \int \frac{\sin x \cos x}{\sqrt{\cos^4 x - \sin^4 x}} dx = -\frac{f(x)}{2} + C. \] then domain of f{x) is
AP EAMCET - 2024
AP EAMCET
Mathematics
Functions
If \( \int_0^{2\pi} (\sin^4 x + \cos^4 x) \, dx = K \int_0^\pi \sin^2 x \, dx + L \int_0^\frac{\pi}{2} \cos^2 x \, dx \) and \( K, L \in \mathbb{N} \), then the number of possible ordered pairs \( (K, L) \) is}
AP EAMCET - 2024
AP EAMCET
Mathematics
Definite and indefinite integrals
Among the options given below, from which option a differential equation of order two can be formed?
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
The differential equation for which \( ax + by = 1 \) is the general solution is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
The solution of the differential equation \( e^x y dx + e^x dy + xdx = 0 \) is:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If \( A = \int_0^{\infty} \frac{1 + x^2}{1 + x^4} dx \) and \( B = \int_0^1 \frac{1 + x^2}{1 + x^4} dx \), then:
AP EAMCET - 2024
AP EAMCET
Mathematics
Definite and indefinite integrals
If the length of the sub-tangent at any point P on a curve is proportional to the abscissa of the point P, then the equation of that curve is (C is an arbitrary constant):
AP EAMCET - 2024
AP EAMCET
Mathematics
Differential equations
If
\[ y = (x - 1)(x + 2)(x^2 + 5)(x^4 + 8), \]
then
\[ \lim\limits_{x \to -1} \left( \frac{dy}{dx} \right) = ? \]
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
If \( y = \sinh^{-1} \left(\frac{1 - x}{1 + x} \right) \), then \( \frac{dy}{dx} \) is given by:
AP EAMCET - 2024
AP EAMCET
Mathematics
Differentiation
Prev
1
...
23
24
25
26
27
...
29
Next