Step 1: Differentiate the given function
Given function:
\[
y = (x
- 1)(x + 2)(x^2 + 5)(x^4 + 8).
\]
Using logarithmic differentiation:
\[
\frac{dy}{dx} = (x + 2)(x^2 + 5)(x^4 + 8) \cdot \frac{d}{dx} (x
- 1) +\]\[
(x
- 1)(x^2 + 5)(x^4 + 8) \cdot \frac{d}{dx} (x + 2) +
(x
- 1)(x + 2)(x^4 + 8) \cdot \frac{d}{dx} (x^2 + 5) +
(x
- 1)(x + 2)(x^2 + 5) \cdot \frac{d}{dx} (x^4 + 8).
\]
Step 2: Compute derivatives
\[
\frac{d}{dx} (x
- 1) = 1, \quad \frac{d}{dx} (x + 2) = 1, \quad \frac{d}{dx} (x^2 + 5) = 2x, \quad \frac{d}{dx} (x^4 + 8) = 4x^3.
\]
Step 3: Substitute \( x =
-1 \)
\[
\frac{dy}{dx} \Big|_{x =
-1} = (
-1 + 2)( (
-1)^2 + 5)( (
-1)^4 + 8) (1) +\]\[
(
-1
- 1)((
-1)^2 + 5)((
-1)^4 + 8) (1) +
(
-1
- 1)(
-1 + 2)((
-1)^4 + 8)(2(
-1)) +
(
-1
- 1)(
-1 + 2)((
-1)^2 + 5)(4(
-1)^3).
\]
Simplifying each term and summing, we get:
\[
\frac{dy}{dx} = 30.
\]