Step 1: Recognizing an Infinite Geometric Series
The given equation:
\[
1 + \sin x + \sin^2 x + \sin^3 x + \dots = S
\]
is an infinite geometric series with first term \( a = 1 \) and common ratio \( r = \sin x \):
\[
S = \frac{1}{1 - \sin x}
\]
Step 2: Solving for \( x \)
\[
\frac{1}{1 - \sin x} = 4 + 2\sqrt{3}
\]
\[
1 - \sin x = \frac{1}{4 + 2\sqrt{3}}
\]
Rationalizing the denominator:
\[
1 - \sin x = \frac{4 - 2\sqrt{3}}{10} = \frac{2 - \sqrt{3}}{5}
\]
\[
\sin x = 1 - \frac{2 - \sqrt{3}}{5} = \frac{3 + \sqrt{3}}{5}
\]
Comparing values, we find:
\[
x = \frac{\pi}{3}, \frac{2\pi}{3}
\]
Thus, the correct answer is \( \frac{\pi}{3}, \frac{2\pi}{3} \).