Step 1: Recognize that \( A \) is in the third quadrant where both sine and cosine are negative, thus \( \cos A = -\frac{5}{13} \).
Step 2: Calculate \( \sin A \) using the Pythagorean identity \( \sin^2 A = 1 - \cos^2 A \). \[ \sin^2 A = 1 - \left(-\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{144}{169} \] \[ \sin A = -\frac{12}{13} \quad \text{(since \( A \) is in the third quadrant)} \] Step 3: Use the identity \( \tan^2 A = \frac{\sin^2 A}{\cos^2 A} \). \[ \tan^2 A = \frac{\left(-\frac{12}{13}\right)^2}{\left(-\frac{5}{13}\right)^2} = \frac{144}{25} \] Step 4: Find \( \tan^4 A + \tan^2 A \). \[ \tan^4 A = \left(\frac{144}{25}\right)^2 = \frac{20736}{625} \] \[ \tan^4 A + \tan^2 A = \frac{20736}{625} + \frac{144}{25} = \frac{20736 + 900}{625} = \frac{21636}{625} = \frac{18}{5} \]
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: