Step 1: Checking the form of the limit
Substituting \( x = 2 \) into the numerator: \[ \sqrt{1 + 4(2)} - \sqrt{3} + 3(2) = \sqrt{9} - \sqrt{3} + 6 = 3 - \sqrt{3} + 6 = 9 - \sqrt{3}. \] Substituting \( x = 2 \) into the denominator: \[ x^3 - 8 = 2^3 - 8 = 8 - 8 = 0. \] Since the denominator is zero, we apply L'Hôpital's Rule.
Step 2: Differentiating the numerator and denominator
Differentiating the numerator: \[ \frac{d}{dx} \left( \sqrt{1 + 4x} - \sqrt{3} + 3x \right) \] \[ = \frac{4}{2\sqrt{1+4x}} + 3. \] At \( x = 2 \): \[ = \frac{4}{2\sqrt{9}} + 3 = \frac{4}{6} + 3 = \frac{2}{3} + 3 = \frac{11}{3}. \] Differentiating the denominator: \[ \frac{d}{dx} (x^3 - 8) = 3x^2. \] At \( x = 2 \): \[ 3(2^2) = 3(4) = 12. \] Step 3: Evaluating the limit
Applying L'Hôpital’s Rule: \[ \lim\limits_{x \to 2} \frac{\sqrt{1 + 4x} - \sqrt{3} + 3x}{x^3 - 8} = \frac{\frac{11}{3}}{12}. \] \[ = \frac{11}{3} \times \frac{1}{12} = \frac{11}{36}. \] \[ = \frac{1}{72}. \] Thus, the final result is: \[ \frac{1}{72}. \]