A matrix is singular if its determinant is zero. Thus, we need to evaluate:
\[ \text{det} \begin{bmatrix} x - 2 & 0 & 1 \\ 1 & x + 3 & 2 \\ 2 & 0 & 2x - 1 \end{bmatrix} = 0 \]
Expanding along the first row:
\[ (x - 2) \begin{vmatrix} x+3 & 2 \\ 0 & 2x - 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 2 & 2x - 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & x+3 \\ 2 & 0 \end{vmatrix} = 0 \]
Calculating the determinant of the 2×2 matrices:
Substituting back:
\[ (x - 2)(2x^2 + 5x - 3) - 2(x + 3) = 0 \]
Given that the required expression evaluates to 4, the final answer is:
4
The value of the determinant where \( \omega \) is cube root of unity is \[ \begin{vmatrix} \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \\ \omega^2 & \omega & \omega^2 \end{vmatrix} \]
Which of the following are ambident nucleophiles?
[A.] CN$^{\,-}$
[B.] CH$_{3}$COO$^{\,-}$
[C.] NO$_{2}^{\,-}$
[D.] CH$_{3}$O$^{\,-}$
[E.] NH$_{3}$
Identify the anomers from the following.

The standard Gibbs free energy change \( \Delta G^\circ \) of a cell reaction is \(-301 { kJ/mol}\). What is \( E^\circ \) in volts?
(Given: \( F = 96500 { C/mol}\), \( n = 2 \))