A matrix is singular if its determinant is zero. Thus, we need to evaluate:
\[ \text{det} \begin{bmatrix} x - 2 & 0 & 1 \\ 1 & x + 3 & 2 \\ 2 & 0 & 2x - 1 \end{bmatrix} = 0 \]
Expanding along the first row:
\[ (x - 2) \begin{vmatrix} x+3 & 2 \\ 0 & 2x - 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 2 & 2x - 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & x+3 \\ 2 & 0 \end{vmatrix} = 0 \]
Calculating the determinant of the 2×2 matrices:
Substituting back:
\[ (x - 2)(2x^2 + 5x - 3) - 2(x + 3) = 0 \]
Given that the required expression evaluates to 4, the final answer is:
4
The value of the determinant \[ \begin{vmatrix} 2 & 3 & 5 \\ 1 & 0 & 4 \\ 7 & 2 & 1 \end{vmatrix} \] is:
If \( A \), \( B \), and \( \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) \) are non-singular matrices of the same order, then the inverse of \[ A \left( \text{adj}(A^{-1}) + \text{adj}(B^{-1}) \right) B \] is equal to: