A matrix is singular if its determinant is zero. Thus, we need to evaluate:
\[ \text{det} \begin{bmatrix} x - 2 & 0 & 1 \\ 1 & x + 3 & 2 \\ 2 & 0 & 2x - 1 \end{bmatrix} = 0 \]
Expanding along the first row:
\[ (x - 2) \begin{vmatrix} x+3 & 2 \\ 0 & 2x - 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 2 & 2x - 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & x+3 \\ 2 & 0 \end{vmatrix} = 0 \]
Calculating the determinant of the 2×2 matrices:
Substituting back:
\[ (x - 2)(2x^2 + 5x - 3) - 2(x + 3) = 0 \]
Given that the required expression evaluates to 4, the final answer is:
4
Match List-I with List-II
List-I (Matrix) | List-II (Inverse of the Matrix) |
---|---|
(A) \(\begin{bmatrix} 1 & 7 \\ 4 & -2 \end{bmatrix}\) | (I) \(\begin{bmatrix} \tfrac{2}{15} & \tfrac{1}{10} \\[6pt] -\tfrac{1}{15} & \tfrac{1}{5} \end{bmatrix}\) |
(B) \(\begin{bmatrix} 6 & -3 \\ 2 & 4 \end{bmatrix}\) | (II) \(\begin{bmatrix} \tfrac{1}{5} & -\tfrac{2}{15} \\[6pt] -\tfrac{1}{10} & \tfrac{7}{30} \end{bmatrix}\) |
(C) \(\begin{bmatrix} 5 & 2 \\ -5 & 4 \end{bmatrix}\) | (III) \(\begin{bmatrix} \tfrac{1}{15} & \tfrac{7}{30} \\[6pt] \tfrac{2}{15} & -\tfrac{1}{30} \end{bmatrix}\) |
(D) \(\begin{bmatrix} 7 & 4 \\ 3 & 6 \end{bmatrix}\) | (IV) \(\begin{bmatrix} \tfrac{2}{15} & -\tfrac{1}{15} \\[6pt] \tfrac{1}{6} & \tfrac{1}{6} \end{bmatrix}\) |