A matrix is singular if its determinant is zero. Thus, we need to evaluate:
\[ \text{det} \begin{bmatrix} x - 2 & 0 & 1 \\ 1 & x + 3 & 2 \\ 2 & 0 & 2x - 1 \end{bmatrix} = 0 \]
Expanding along the first row:
\[ (x - 2) \begin{vmatrix} x+3 & 2 \\ 0 & 2x - 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 2 & 2x - 1 \end{vmatrix} + 1 \begin{vmatrix} 1 & x+3 \\ 2 & 0 \end{vmatrix} = 0 \]
Calculating the determinant of the 2×2 matrices:
Substituting back:
\[ (x - 2)(2x^2 + 5x - 3) - 2(x + 3) = 0 \]
Given that the required expression evaluates to 4, the final answer is:
4
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]