Let \( f: [0, 1] \to \mathbb{R} \) and \( g: [0, 1] \to \mathbb{R} \) be defined as follows:
The function \( f(x) \) is defined as:
\[ f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \]
The function \( g(x) \) is defined as:
\[ g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \]
Then: