Step 1: Find the center of the circle by intersecting the diameters.
Solving \( x - y = 0 \) and \( x + y = 1 \) gives the center \( C \left( \frac{1}{2}, \frac{1}{2} \right) \).
Step 2: Use the condition that the circle passes through the origin \( (0, 0) \).
The radius \( R \) is the distance between the center and the origin.
Step 3: Calculate the distance.
\[
R = \sqrt{\left( \frac{1}{2} - 0 \right)^2 + \left( \frac{1}{2} - 0 \right)^2} = \sqrt{\left( \frac{1}{2} \right)^2 + \left( \frac{1}{2} \right)^2} = \sqrt{\frac{1}{4} + \frac{1}{4}} = \sqrt{\frac{2}{4}} = \frac{1}{\sqrt{2}}
\]