We are given \( f(x) = \frac{3x - 4}{2x - 3} \), and we need to find \( f(f(f(x))) \).
Step 1: Compute \( f(f(x)) \).
To find \( f(f(x)) \), we first substitute \( f(x) = \frac{3x - 4}{2x - 3} \) into itself. Thus, we compute:
\[
f(f(x)) = f\left( \frac{3x - 4}{2x - 3} \right) = \frac{3\left( \frac{3x - 4}{2x - 3} \right) - 4}{2\left( \frac{3x - 4}{2x - 3} \right) - 3}.
\]
Simplifying both the numerator and denominator:
\[
\text{Numerator: } 3\left( \frac{3x - 4}{2x - 3} \right) - 4 = \frac{9x - 12}{2x - 3} - 4 = \frac{9x - 12 - 4(2x - 3)}{2x - 3} = \frac{9x - 12 - 8x + 12}{2x - 3} = \frac{x}{2x - 3}.
\]
\[
\text{Denominator: } 2\left( \frac{3x - 4}{2x - 3} \right) - 3 = \frac{6x - 8}{2x - 3} - 3 = \frac{6x - 8 - 3(2x - 3)}{2x - 3} = \frac{6x - 8 - 6x + 9}{2x - 3} = \frac{1}{2x - 3}.
\]
So, we have:
\[
f(f(x)) = \frac{\frac{x}{2x - 3}}{\frac{1}{2x - 3}} = x.
\]
Step 2: Compute \( f(f(f(x))) \).
Now that we know \( f(f(x)) = x \), we can apply \( f \) again:
\[
f(f(f(x))) = f(x) = \frac{3x - 4}{2x - 3}.
\]
Thus, the value of \( f(f(f(x))) \) is \( \frac{3x - 4}{2x - 3} \), which is the same as \( f(x) \).
Step 3: Conclusion.
The answer is \( \frac{3x - 4}{2x - 3} \), which matches option (D).