If, \( I_n = \int_{-\pi}^{\pi} \frac{\cos(nx)(1+2^x)}{dx} \), where \( n = 0, 1, 2, \dots \), then which of the following are correct?
A. \( I_n = I_{n+2} \), for all \( n = 0, 1, 2, \dots \)
B. \( I_n = 0 \), for all \( n = 0, 1, 2, \dots \)
C. \( \sum_{n=1}^{10} I_n = 2^{10} \)
D. \( \sum_{n=1}^{10} I_n = 0 \)
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of: