Question:

Let \( f: [0, 1] \to \mathbb{R} \) and \( g: [0, 1] \to \mathbb{R} \) be defined as follows:
 
The function \( f(x) \) is defined as:
\[ f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \]
The function \( g(x) \) is defined as:
\[ g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \]
Then:

Show Hint

Be careful with functions defined piecewise on rationals and irrationals. Their continuity properties are often counter-intuitive.
Updated On: Apr 28, 2025
  • \( f \) and \( g \) are continuous at \( x = \frac{1}{2} \).
  • \( f + g \) is continuous at \( x = \frac{2}{3} \) but \( f \) and \( g \) are discontinuous at \( x = \frac{2}{3} \).
  • \( f(x) \cdot g(x)>0 \) for some \( x \in (0, 1) \).
  • \( f + g \) is not differentiable at \( x = \frac{3}{4} \).
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To determine the behavior of the functions \( f \) and \( g \), and their sum \( f + g \), we begin by analyzing the definitions:
\( f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 0 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \)
\( g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{if } x \in (\mathbb{R} \setminus \mathbb{Q}) \cap [0, 1] \end{cases} \)
Both functions switch values depending on whether \( x \) is rational (\( \mathbb{Q} \)) or irrational (\( \mathbb{R} \setminus \mathbb{Q} \)).
Step 1: Evaluating Continuity of \( f \) and \( g \) at \( x = \frac{2}{3} \):
\( f \) and \( g \) are discontinuous everywhere on \([0, 1]\) since \(\mathbb{Q}\) is dense in \(\mathbb{R}\), causing frequent jumps between 0 and 1 wherever \(\mathbb{Q}\) or \(\mathbb{R} \setminus \mathbb{Q}\) is chosen.
Step 2: Evaluating Continuity of \( f + g \):
For \( f(x) + g(x) \), observe both cases:
  • If \( x \in \mathbb{Q} \), \( f(x) = 1 \) and \( g(x) = 0 \), so \( f(x) + g(x) = 1 \).
  • If \( x \in \mathbb{R} \setminus \mathbb{Q} \), \( f(x) = 0 \) and \( g(x) = 1 \), so \( f(x) + g(x) = 1 \).
Thus, \( f(x) + g(x) = 1 \) for all \( x \in [0, 1] \), showing it is continuous at every point since there is no change in the value.
Conclusion:
The correct statement is: \( f + g \) is continuous at \( x = \frac{2}{3} \) but both functions \( f \) and \( g \) are discontinuous at \( x = \frac{2}{3} \).
Was this answer helpful?
0
0