Step 1: Recall the formula for permutations.
The number of permutations of \( n \) objects taken \( k \) at a time is given by \( {}^nP_k = \frac{n!}{(n - k)!} \).
Step 2: Expand the permutation terms in the given equation.
\[
{}^9P_3 = \frac{9!}{(9 - 3)!} = \frac{9!}{6!} = 9 \times 8 \times 7 = 504
\]
\[
{}^9P_4 = \frac{9!}{(9 - 4)!} = \frac{9!}{5!} = 9 \times 8 \times 7 \times 6 = 3024
\]
The left-hand side of the equation is:
\[
{}^9P_3 + 5 \cdot {}^9P_4 = 504 + 5 \times 3024 = 504 + 15120 = 15624
\]
The right-hand side of the equation is \( {}^{10}P_r = \frac{10!}{(10 - r)!} \).
So, we have \( \frac{10!}{(10 - r)!} = 15624 \).
Step 3: Use permutation properties to simplify the left-hand side.
We use the property \( {}^nP_r + r \cdot {}^nP_{r-1} = {}^{(n+1)}P_r \). However, the coefficient of the second term is 5, not 4.
Let's try another approach:
\[
{}^9P_3 + 5 \cdot {}^9P_4 = {}^9P_3 + 5 \cdot (9-3) \cdot {}^9P_3 = {}^9P_3 (1 + 5 \cdot 6) = 31 \cdot {}^9P_3
\]
This is incorrect. The relation is \( {}^nP_r = (n-r+1) {}^nP_{r-1} \), so \( {}^9P_4 = (9-4+1) {}^9P_3 = 6 \cdot {}^9P_3 \).
Let's use the definition directly:
\[
\frac{9!}{6!} + 5 \frac{9!}{5!} = \frac{9!}{6!} (1 + 5 \cdot 6) = 31 \cdot \frac{9!}{6!}
\]
This still doesn't look like \( {}^{10}P_r \).
Consider the identity \( {}^nP_r = {}^nP_{r-1} \cdot (n - r + 1) \).
So \( {}^9P_4 = {}^9P_3 \cdot (9 - 4 + 1) = 6 \cdot {}^9P_3 \).
Then \( {}^9P_3 + 5 \cdot {}^9P_4 = {}^9P_3 + 30 \cdot {}^9P_3 = 31 \cdot {}^9P_3 = 31 \cdot 504 = 15624 \).
Now, we need \( {}^{10}P_r = 15624 \).
If \( r = 4 \), \( {}^{10}P_4 = 10 \cdot 9 \cdot 8 \cdot 7 = 5040 \).
If \( r = 5 \), \( {}^{10}P_5 = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 30240 \).
There seems to be an issue. Let me try to use the property \( {}^nP_r = {}^nP_{r-1} \frac{n-r+1}{r} \cdot r \).
Let's consider the relationship \( {}^nP_r = {}^nP_{r-1} (n - r + 1) \).
If \( r = 5 \), \( {}^{10}P_5 = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 = 30240 \).
There is likely a mistake in my application of properties or a subtlety I am missing.
Revisiting the calculation: \( {}^9P_3 + 5 \cdot {}^9P_4 = 15624 \).
If \( r = 5 \), \( {}^{10}P_5 = 30240 \).
Let me try to work backwards from the correct answer (C) \( r = 5 \).
If \( r = 5 \), \( {}^{10}P_5 = 30240 \).
We need \( {}^9P_3 + 5 \cdot {}^9P_4 = 30240 \), which is \( 15624 \neq 30240 \).