Question:

Let \( f(\theta) = \begin{vmatrix} 1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1 \end{vmatrix} \). Suppose \( A \) and \( B \) are respectively the maximum and minimum values of \( f(\theta) \). Then \( (A, B) \) is equal to:

Show Hint

Simplify the expression before finding the maximum and minimum values. Utilize the range of trigonometric functions.
Updated On: Apr 28, 2025
  • \( (2, 1) \)
  • \( (2, 0) \)
  • \( (\sqrt{2}, 1) \)
  • \( \left(2, \frac{1}{\sqrt{2}}\right) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation


Step 1: Evaluate the determinant \( f(\theta) \). \[ f(\theta) = 1(1 \cdot 1 - (-\cos \theta)(\sin \theta)) - \cos \theta((-\sin \theta)(1) - (-\cos \theta)(-1)) + (-1)((-\sin \theta)(\sin \theta) - (1)(-1)) \] \[ f(\theta) = (1 + \sin \theta \cos \theta) - \cos \theta(-\sin \theta - \cos \theta) - (-\sin^2 \theta + 1) \] \[ f(\theta) = 1 + \sin \theta \cos \theta + \sin \theta \cos \theta + \cos^2 \theta + \sin^2 \theta - 1 \] \[ f(\theta) = 2 \sin \theta \cos \theta + (\sin^2 \theta + \cos^2 \theta) - 1 + 1 = \sin(2\theta) + 1 \]
Step 2: Find the maximum value \( A \).
The maximum value of \( \sin(2\theta) \) is 1. \[ A = 1 + 1 = 2 \]
Step 3: Find the minimum value \( B \).
The minimum value of \( \sin(2\theta) \) is -1. \[ B = 1 + (-1) = 0 \]
Step 4: Determine \( (A, B) \). \[ (A, B) = (2, 0) \]
Was this answer helpful?
0
0

Top Questions on Matrix

View More Questions