Step 1: Expand \( f(x+y) \).
Given \( f(x) = ux^2 + vx + w \), so
\[
f(x+y) = u(x+y)^2 + v(x+y) + w = u(x^2 + 2xy + y^2) + v(x+y) + w,
\]
\[
= ux^2 + 2uxy + uy^2 + vx + vy + w.
\]
Step 2: Expand \( f(x) + f(y) + xy \).
Also,
\[
f(x) = ux^2 + vx + w, \quad f(y) = uy^2 + vy + w,
\]
thus
\[
f(x) + f(y) + xy = ux^2 + uy^2 + vx + vy + 2w + xy.
\]
Step 3: Compare coefficients from both sides.
From
\[
ux^2 + 2uxy + uy^2 + vx + vy + w = ux^2 + uy^2 + vx + vy + 2w + xy,
\]
equating the coefficients:
Coefficient of \(x^2\): \( u = u \) (ok).
Coefficient of \(y^2\): \( u = u \) (ok).
Coefficient of \(xy\): \( 2u = 1 \quad \Rightarrow \quad u = \frac{1}{2} \).
Coefficient of \(x\): \( v = v \) (ok).
Coefficient of \(y\): \( v = v \) (ok).
Constant term: \( w = 2w \quad \Rightarrow \quad w = 0 \).
Step 4: Find \(v\) using the given condition.
Given:
\[
u + v + w = 3.
\]
Substituting \( u = \frac{1}{2} \) and \( w = 0 \),
\[
\frac{1}{2} + v + 0 = 3 \quad \Rightarrow \quad v = \frac{5}{2}.
\]
Step 5: Find \( f(1) \).
Now,
\[
f(1) = u(1)^2 + v(1) + w = \frac{1}{2} + \frac{5}{2} + 0 = 3.
\]