Step 1: Analyze the given functional equations.
We are given two composite functions:
\( g(f(x)) = |\sin x| \),
\( f(g(x)) = (\sin \sqrt{x})^2 \).
We need to find functions \( f(x) \) and \( g(x) \) that satisfy both equations simultaneously.
Step 2: Substitute and test option (A).
Consider option (A): \( f(x) = \sin^2 x \), \( g(x) = \sqrt{x} \).
Compute \( g(f(x)) \):
\[
g(f(x)) = g(\sin^2 x) = \sqrt{\sin^2 x}.
\]
Since \( \sqrt{\sin^2 x} = |\sin x| \) (as the square root of a square is the absolute value), we get:
\[
g(f(x)) = |\sin x|,
\]
which matches the first equation.
Compute \( f(g(x)) \):
\[
f(g(x)) = f(\sqrt{x}) = \sin^2 \sqrt{x}.
\]
We need to check if \( \sin^2 \sqrt{x} = (\sin \sqrt{x})^2 \). Since \( (\sin \sqrt{x})^2 \) is the square of \( \sin \sqrt{x} \), and \( \sin^2 \sqrt{x} \) is the same (as \( (\sin \theta)^2 = \sin^2 \theta \)), we have:
\[
f(g(x)) = \sin^2 \sqrt{x} = (\sin \sqrt{x})^2,
\]
which matches the second equation.
Step 3: Verify consistency.
The domain of \( g(x) = \sqrt{x} \) requires \( x \geq 0 \), and since \( |\sin x| \) and \( (\sin \sqrt{x})^2 \) are defined for all real \( x \geq 0 \), the functions are consistent.
Option (A) satisfies both equations, confirming it as a valid solution.
Step 4: Test other options to ensure uniqueness.
% Option
(B) \( f(x) = \sin x \), \( g(x) = |x| \):
\( g(f(x)) = g(\sin x) = |\sin x| \),
\( f(g(x)) = f(|x|) = \sin |x| \), not \( (\sin \sqrt{x})^2 \).
% Option
(C) \( f(x) = x^2 \), \( g(x) = \sin \sqrt{x} \):
\( g(f(x)) = g(x^2) = \sin \sqrt{x^2} = \sin |x| \), not \( |\sin x| \) unless \( x \geq 0 \),
\( f(g(x)) = f(\sin \sqrt{x}) = (\sin \sqrt{x})^2 \), which matches, but \( g(f(x)) \) fails.
% Option
(D) \( f(x) = |x| \), \( g(x) = \sin x \):
\( g(f(x)) = g(|x|) = \sin |x| = |\sin x| \),
\( f(g(x)) = f(\sin x) = |\sin x| \), not \( (\sin \sqrt{x})^2 \).
Step 5: Conclude the result.
Option (A) satisfies both \( g(f(x)) = |\sin x| \) and \( f(g(x)) = (\sin \sqrt{x})^2 \), making it the correct solution.