The sensitivity of the potentiometer is defined as the smallest potential difference that can be measured.
This sensitivity is:
Directly proportional to the length of the potentiometer wire (\(A\)): Longer wires provide higher sensitivity.
Inversely proportional to the potential gradient (\(C\)): Lower gradients increase sensitivity.
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is:
In the figure shown below, a resistance of 150.4 $ \Omega $ is connected in series to an ammeter A of resistance 240 $ \Omega $. A shunt resistance of 10 $ \Omega $ is connected in parallel with the ammeter. The reading of the ammeter is ______ mA.
Let $ A $ be the set of all functions $ f: \mathbb{Z} \to \mathbb{Z} $ and $ R $ be a relation on $ A $ such that $$ R = \{ (f, g) : f(0) = g(1) \text{ and } f(1) = g(0) \} $$ Then $ R $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Current electricity is defined as the flow of electrons from one section of the circuit to another.
There are two types of current electricity as follows:
The current electricity whose direction remains the same is known as direct current. Direct current is defined by the constant flow of electrons from a region of high electron density to a region of low electron density. DC is used in many household appliances and applications that involve a battery.
The current electricity that is bidirectional and keeps changing the direction of the charge flow is known as alternating current. The bi-directionality is caused by a sinusoidally varying current and voltage that reverses directions, creating a periodic back-and-forth motion for the current. The electrical outlets at our homes and industries are supplied with alternating current.