We need to find the local minimum values of the piecewise function \( f(x) \).
Case 1: \( x < -1 \)
\( f(x) = 1 - 2x \)
This is a decreasing linear function with no local minima.
Case 2: \( -1 \leq x \leq 2 \)
\( f(x) = \frac{1}{3}(7 + 2|x|) \)
For \( -1 \leq x \leq 0 \): \( f(x) = \frac{1}{3}(7 - 2x) \), \( f'(x) = -\frac{2}{3} \) (decreasing)
For \( 0 \leq x \leq 2 \): \( f(x) = \frac{1}{3}(7 + 2x) \), \( f'(x) = \frac{2}{3} \) (increasing)
Local minimum at \( x = 0 \): \( f(0) = \frac{7}{3} \)
Case 3: \( x > 2 \)
\( f(x) = \frac{11}{18}(x-4)(x-5) \)
Critical point at \( x = 4.5 \):
\( f(4.5) = -\frac{11}{72} \) (local minimum since \( f''(x) > 0 \))
Continuity Check at \( x = 2 \):
Both pieces give \( f(2) = \frac{11}{3} \), confirming continuity but no additional extrema.
Sum of Local Minima:
\[ \frac{7}{3} + \left(-\frac{11}{72}\right) = \frac{168}{72} - \frac{11}{72} = \frac{157}{72} \]
Final Answer:
The sum of all local minimum values is \(\dfrac{157}{72}\).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: