To solve for \( \sum_{k=1}^{100} a_k \), we need to analyze the recurrence relation and find the form of \( a_n \). The sequence is defined by \( a_0 = 0 \), \( a_1 = \frac{1}{2} \), and the recurrence relation: \( 2a_{n+2} = 5a_{n+1} - 3a_n \). Assume a solution of the form \( a_n = r^n \) in the recurrence relation: \( 2r^{n+2} = 5r^{n+1} - 3r^n \) Dividing throughout by \( r^n \) (assuming \( r \neq 0 \)): \[ 2r^2 = 5r - 3 \] Rearranging gives the characteristic equation: \[ 2r^2 - 5r + 3 = 0 \] Solving this quadratic equation using the quadratic formula \( r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) with \( a = 2 \), \( b = -5 \), \( c = 3 \), yields: \[ r = \frac{5 \pm \sqrt{25 - 24}}{4} = \frac{5 \pm 1}{4} \] So, \( r = \frac{6}{4} = \frac{3}{2} \) and \( r = \frac{4}{4} = 1 \). Thus, the general solution is: \[ a_n = A \left(\frac{3}{2}\right)^n + B(1)^n \] With initial conditions \( a_0 = 0 \) and \( a_1 = \frac{1}{2} \): \[ a_0 = A + B = 0 \] \[ a_1 = A \cdot \frac{3}{2} + B = \frac{1}{2} \] Solving these: \( B = -A \), substitute \( a_1 \): \[ A \cdot \frac{3}{2} - A = \frac{1}{2} \] \[ A\left( \frac{1}{2} \right) = \frac{1}{2} \Rightarrow A = 1 \] \( B = -1 \) Thus, \( a_n = \left(\frac{3}{2}\right)^n - 1 \). Now calculate the sum: \[ \sum_{k=1}^{100} a_k = \sum_{k=1}^{100} \left(\left(\frac{3}{2}\right)^k - 1\right) \] \[ = \sum_{k=1}^{100}\left(\frac{3}{2}\right)^k - \sum_{k=1}^{100} 1 \] Sum of first 100 terms of a geometric series with \( a = \frac{3}{2} \), \( r = \frac{3}{2} \): \[ S_{100} = \frac{\left(\frac{3}{2}\right)\left(\left(\frac{3}{2}\right)^{100} - 1\right)}{\frac{3}{2} - 1} \] \[ = 3\left(\left(\frac{3}{2}\right)^{100} - 1\right) \] \[\ \sum_{k=1}^{100} a_k = 3a_{100} + 100 \] This matches the correct answer choice: \( 3a_{100} + 100 \).
Let $ a_1, a_2, a_3, \ldots $ be in an A.P. such that $$ \sum_{k=1}^{12} 2a_{2k - 1} = \frac{72}{5}, \quad \text{and} \quad \sum_{k=1}^{n} a_k = 0, $$ then $ n $ is:
The sum $ 1 + \frac{1 + 3}{2!} + \frac{1 + 3 + 5}{3!} + \frac{1 + 3 + 5 + 7}{4!} + ... $ upto $ \infty $ terms, is equal to
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to: