We use the ideal gas law in terms of the Boltzmann constant:
\(PV = NkT\)
Where:
- \( P = 1.38 \, \text{atm} = 1.38 \times 1.01 \times 10^5 \, \text{Pa} \),
- \( N = 2.0 \times 10^{25} \) (total number of molecules),
- \( k = 1.38 \times 10^{-23} \, \text{J K}^{-1} \).
Rearranging the formula to solve for \( T \):
\(T = \frac{PV}{Nk}\)
Substituting the values:
\(P = 1.38 \times 1.01 \times 10^5 = 1.01 \times 10^5 \, \text{Pa}\)
\(T = \frac{1.01 \times 10^5}{2 \times 10^{25} \times 1.38 \times 10^{-23}}\)
Simplifying, we get:
\(T = \frac{1.01 \times 10^3}{2} \approx 500 \, \text{K}\)
Thus, the temperature \( T \) is 500 K.
The Correct Answer is: 500 K
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: