Question:

The temperature of a gas having \( 2.0 \times 10^{25} \) molecules per cubic meter at 1.38 atm (Given, \( k = 1.38 \times 10^{-23} \, \text{JK}^{-1} \)) is:

Updated On: Dec 25, 2024
  • 500 K
  • 200 K
  • 100 K
  • 300 K
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

We use the ideal gas law in terms of the Boltzmann constant:  

\(PV = NkT\)

Where:  
- \( P = 1.38 \, \text{atm} = 1.38 \times 1.01 \times 10^5 \, \text{Pa} \),  
- \( N = 2.0 \times 10^{25} \) (total number of molecules),  
- \( k = 1.38 \times 10^{-23} \, \text{J K}^{-1} \).

Rearranging the formula to solve for \( T \):  
\(T = \frac{PV}{Nk}\)

Substituting the values:  

\(P = 1.38 \times 1.01 \times 10^5 = 1.01 \times 10^5 \, \text{Pa}\)

\(T = \frac{1.01 \times 10^5}{2 \times 10^{25} \times 1.38 \times 10^{-23}}\)
 

Simplifying, we get:  

\(T = \frac{1.01 \times 10^3}{2} \approx 500 \, \text{K}\)
Thus, the temperature \( T \) is 500 K.

The Correct Answer is: 500 K

Was this answer helpful?
1
0

Questions Asked in JEE Main exam

View More Questions