Step 1: Given:
Frequency \( f = 500 \, \text{Hz} \), Distance \( d = 600 \, \text{m} \), Time \( t = 2 \, \text{s} \)
Step 2: Find speed of sound:
\[
v = \frac{d}{t} = \frac{600}{2} = 300 \, \text{m/s}
\]
Step 3: Use wave speed formula \( v = f\lambda \) to find wavelength:
\[
\lambda = \frac{v}{f} = \frac{300}{500} = 0.6 \, \text{m}
\]
Step 4: Number of waves between X and Y:
\[
\text{Number of waves} = \frac{\text{distance}}{\text{wavelength}} = \frac{600}{0.6} = \boxed{1000}
\]