Given:
\( P(1, 0, 3) \), \( A(4, 7, 1) \), \( B(3, 5, 3) \)
Line \( AB \) is represented as:
\[
\text{Line AB} \Rightarrow \frac{x - 3}{1} = \frac{y - 5}{2} = \frac{z - 3}{-2} = \lambda
\]
Let the foot of the perpendicular from \( P \) on \( AB \) be \( R \).
\[
R = (\lambda + 3, 2\lambda + 5, -2\lambda + 3)
\]
Equating the components, we get:
\[
(\lambda + 3 - 1)(1) + (2\lambda + 5 - 0)(2) + (-2\lambda + 3 - 3)(2) = 0
\]
\[
\Rightarrow \lambda + 2 + 4\lambda + 10 + 4\lambda = 0
\]
\[
\Rightarrow \lambda = -\frac{4}{3}
\]
Substitute \( \lambda = -\frac{4}{3} \) into the equations for the coordinates of \( R \):
\[
R = \left( \frac{5}{3}, \frac{7}{3}, \frac{17}{3} \right)
\]
Now calculate the coordinates of \( Q \):
\[
Q = \left( \frac{10}{3}, \frac{14}{3}, \frac{34}{3} \right)
\]
Now calculate \( \alpha + \beta + \gamma \):
\[
\alpha + \beta + \gamma = \frac{7 + 14 + 25}{3} = \frac{46}{3}
\]
Hence, the answer is \( \frac{46}{3} \).