Step 1: Convert temperatures to Kelvin
\[
T_1 = 27 + 273 = 300\, K, \quad T_2 = 327 + 273 = 600\, K.
\]
Step 2: Calculate final temperature using mole fraction weighted average
\[
T_f = \frac{n_1 T_1 + n_2 T_2}{n_1 + n_2} = \frac{2 \times 300 + 4 \times 600}{2 + 4} = \frac{600 + 2400}{6} = \frac{3000}{6} = 500\, K.
\]
Step 3: Convert final temperature to Celsius
\[
T_f = 500 - 273 = 227^\circ C.
\]
Step 4: Conclusion
The temperature of the mixture is 227 °C.