The standard enthalpy and standard entropy of decomposition of \( N_2O_4 \) to \( NO_2 \) are 55.0 kJ mol\(^{-1}\) and 175.0 J/mol respectively. The standard free energy change for this reaction at 25°C in J mol\(^{-1}\) is (Nearest integer)
The decomposition of \(N_2O_4\) to \(NO_2\) is given by: \[ N_2O_4(g) \rightleftharpoons 2NO_2(g) \]
1. Given Thermodynamic Data:
- Standard enthalpy change: \(\Delta H^\circ = 55.0 \, \text{kJ mol}^{-1} = 55000 \, \text{J mol}^{-1}\)
- Standard entropy change: \(\Delta S^\circ = 175.0 \, \text{J mol}^{-1} \text{K}^{-1}\)
- Temperature: \(T = 25^\circ \text{C} = 298 \, \text{K}\)
2. Gibbs Free Energy Equation:
The standard Gibbs free energy change is calculated using:
\[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \]
3. Calculation:
Substituting the given values:
\[ \Delta G^\circ = 55000 \, \text{J mol}^{-1} - (298 \, \text{K}) (175.0 \, \text{J mol}^{-1} \text{K}^{-1}) \]
\[ \Delta G^\circ = 55000 - 52150 = 2850 \, \text{J mol}^{-1} \]
4. Final Result:
The standard free energy change for this reaction at 25°C is \(2850 \, \text{J mol}^{-1}\).
Final Answer:
The final answer is $\boxed{2850}$.
Step 1: Write the given data
\[ \Delta H^\circ = 55.0 \, \text{kJ mol}^{-1} = 55.0 \times 10^3 \, \text{J mol}^{-1} \] \[ \Delta S^\circ = 175.0 \, \text{J mol}^{-1}\text{K}^{-1} \] \[ T = 25^\circ C = 25 + 273 = 298\, \text{K} \]
Step 2: Apply the Gibbs free energy equation
\[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] Substitute the given values: \[ \Delta G^\circ = (55.0 \times 10^3) - (298)(175) \]
Step 3: Perform the calculation
\[ \Delta G^\circ = 55,000 - 52,150 = 2,850 \, \text{J mol}^{-1} \]
\[ \boxed{\Delta G^\circ = 2850 \, \text{J mol}^{-1}} \]
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
