Given: Mean \( = 9 \) and Variance \( = 9.25 \). The given numbers are \( 6, 4, 8, 8, b, 12, 10, 13 \).
\[
\text{Mean} = \frac{53 + a + b}{7} = 9
\]
\[
\Rightarrow 53 + a + b = 63 \quad \text{or} \quad a + b = 19
\]
\[
\text{Variance:} \quad \sigma^2 = \frac{1}{7} \left[ 37 + 529 + a^2 + b^2 \right]
\]
\[
\Rightarrow 9.25 = \frac{37 + 529 + a^2 + b^2}{7}
\]
\[
\Rightarrow 648 + 74 = 529 + a^2 + b^2 \quad \Rightarrow \quad a^2 + b^2 = 193
\]
Now we have the following system of equations:
\[
a + b = 19 \quad \text{and} \quad a^2 + b^2 = 193
\]
From this, we can solve for \( a + b + ab \):
\[
(a + b)^2 = a^2 + b^2 + 2ab
\]
\[
19^2 = 193 + 2ab \quad \Rightarrow \quad 361 = 193 + 2ab
\]
\[
\Rightarrow 2ab = 168 \quad \Rightarrow \quad ab = 84
\]
Thus, \( a + b + ab = 103 \).