The effect of temperature on the spontaneity of reactions are represented as: Which of the following is correct?

To determine the spontaneity of a reaction based on the effect of temperature, we use the Gibbs free energy change equation:
\(\Delta G = \Delta H - T\Delta S\)
Where:
The spontaneity of the reaction depends on the signs of \(\Delta H\) and \(\Delta S\):
The correct options are (B) and (C) because they correspond to scenarios 2 and 3, respectively, where reactions can be spontaneous depending on the temperature.
Match the List-I with List-II

Choose the correct answer from the options given below:
A gun fires a lead bullet of temperature 300 K into a wooden block. The bullet having melting temperature of 600 K penetrates into the block and melts down. If the total heat required for the process is 625 J, then the mass of the bullet is grams. Given Data: Latent heat of fusion of lead = \(2.5 \times 10^4 \, \text{J kg}^{-1}\) and specific heat capacity of lead = 125 J kg\(^{-1}\) K\(^{-1}\).
Using the given P-V diagram, the work done by an ideal gas along the path ABCD is: 
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.