The orbital speed of a satellite depends only on the mass of the central body (in this case, Earth) and the orbital radius. The mass of the satellite itself is irrele vant. Use the formula for orbital speed to find the ratio of speeds
The velocity of a satellite in orbit is given by:
\( v = \sqrt{\frac{GM}{r}} \)
Rearranging the formula, we see that velocity is inversely proportional to the square root of the radius:
\( v \propto \frac{1}{\sqrt{r}} \)
For two different radii, \( r_1 \) and \( r_2 \):
\( \frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}} \)
If \( r_2 = 3r_1 \):
\( \frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}} = \sqrt{3} \)
The velocity at the smaller radius (\( v_1 \)) is \( \sqrt{3} \) times the velocity at the larger radius (\( v_2 \)).
Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R. Assertion A: The kinetic energy needed to project a body of mass $m$ from earth surface to infinity is $\frac{1}{2} \mathrm{mgR}$, where R is the radius of earth. Reason R: The maximum potential energy of a body is zero when it is projected to infinity from earth surface.
Match List-I with List-II: List-I
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)