The orbital speed of a satellite depends only on the mass of the central body (in this case, Earth) and the orbital radius. The mass of the satellite itself is irrele vant. Use the formula for orbital speed to find the ratio of speeds
The velocity of a satellite in orbit is given by:
\( v = \sqrt{\frac{GM}{r}} \)
Rearranging the formula, we see that velocity is inversely proportional to the square root of the radius:
\( v \propto \frac{1}{\sqrt{r}} \)
For two different radii, \( r_1 \) and \( r_2 \):
\( \frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}} \)
If \( r_2 = 3r_1 \):
\( \frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}} = \sqrt{3} \)
The velocity at the smaller radius (\( v_1 \)) is \( \sqrt{3} \) times the velocity at the larger radius (\( v_2 \)).
Match the LIST-I with LIST-II
\[ \begin{array}{|l|l|} \hline \text{LIST-I} & \text{LIST-II} \\ \hline \text{A. Gravitational constant} & \text{I. } [LT^{-2}] \\ \hline \text{B. Gravitational potential energy} & \text{II. } [L^2T^{-2}] \\ \hline \text{C. Gravitational potential} & \text{III. } [ML^2T^{-2}] \\ \hline \text{D. Acceleration due to gravity} & \text{IV. } [M^{-1}L^3T^{-2}] \\ \hline \end{array} \]
Choose the correct answer from the options given below:
