\( V^2 = 0 + 2g(S-x) \) \( V^2 = 2g(S-x) \)
At B, Potential energy = mgx Kinetic energy
= \( \frac{1}{2} mv^2 \) \( \frac{1}{2} mv^2 = 3mgx \)
\( gx = \frac{1}{6} v^2 = \frac{1}{6} 2g(S-x) \) \( 4x = S \)
\( x = \frac{S}{4} \) \( V = \sqrt{2g \times \frac{3S}{4}} = \sqrt{\frac{3gS}{2}} \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: