\( V^2 = 0 + 2g(S-x) \) \( V^2 = 2g(S-x) \)
At B, Potential energy = mgx Kinetic energy
= \( \frac{1}{2} mv^2 \) \( \frac{1}{2} mv^2 = 3mgx \)
\( gx = \frac{1}{6} v^2 = \frac{1}{6} 2g(S-x) \) \( 4x = S \)
\( x = \frac{S}{4} \) \( V = \sqrt{2g \times \frac{3S}{4}} = \sqrt{\frac{3gS}{2}} \)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: