Step 1: Analyze Assertion (A).
Assertion (A) states Kepler's second law of planetary motion: the radius vector from the Sun to a planet sweeps out equal areas in equal intervals of time, implying constant areal velocity. This is a fundamental law of planetary motion and is correct.
Step 2: Analyze Reason (R).
Reason (R) states that for a central force field, the angular momentum is a constant. Gravitational force, which governs planetary motion around the Sun, is a central force. Under a central force, the torque on the planet with respect to the Sun is zero, leading to the conservation of the planet's angular momentum.
Thus, Reason (R) is also correct.
Step 3: Determine if Reason (R) is the correct explanation of Assertion (A).
The areal velocity \( \frac{dA}{dt} \) of a planet is mathematically related to its angular momentum \( L \) by \( \frac{dA}{dt} = \frac{L}{2m} \), where \( m \) is the mass of the planet. Since the gravitational force is central, the angular momentum \( L \) is conserved. As the mass \( m \) is also constant, the areal velocity \( \frac{dA}{dt} \) remains constant.
Therefore, the conservation of angular momentum (Reason (R)) directly explains the constant areal velocity (Assertion (A)).