A particle is projected at an angle of \( 30^\circ \) from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is \( h_0 \) and height traversed in the last second, before it reaches the maximum height, is \( h_1 \). The ratio \( \frac{h_0}{h_1} \) is __________. [Take \( g = 10 \, \text{m/s}^2 \)]
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)
Match List - I with List - II:List - I: (A) \([ \text{MnBr}_4]^{2-}\) (B) \([ \text{FeF}_6]^{3-}\) (C) \([ \text{Co(C}_2\text{O}_4)_3]^{3-}\) (D) \([ \text{Ni(CO)}_4]\) List - II: (I) d²sp³ diamagnetic (II) sp²d² paramagnetic (III) sp³ diamagnetic (IV) sp³ paramagnetic
To obtain the given truth table, the following logic gate should be placed at G:
\( x \) is a peptide which is hydrolyzed to 2 amino acids \( y \) and \( z \). \( y \) when reacted with HNO\(_2\) gives lactic acid. \( z \) when heated gives a cyclic structure as below:
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $ and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $
Given below are two statements: Statement I: D-(+)-glucose + D-(+)-fructose $\xrightarrow{H_2O}$ sucrose sucrose $\xrightarrow{\text{Hydrolysis}}$ D-(+)-glucose + D-(+)-fructoseStatement II: Invert sugar is formed during sucrose hydrolysis. In the light of the above statements, choose the correct answer from the options given below -
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to