We are given the integrals:
\[
I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx
\]
and
\[
I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx
\]
We aim to find \( \frac{I_2}{I_1} \).
Step 1: Analyze \( I_1 \)
The integral \( I_1 \) is:
\[
I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx
\]
Step 2: Analyze \( I_2 \)
The integral \( I_2 \) is:
\[
I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx
\]
We can simplify the integrals using symmetry and properties of the integrand.
Step 3: Compare \( I_2 \) and \( I_1 \)
By symmetry and using the fact that both integrals involve similar forms, we can conclude that:
\[
\frac{I_2}{I_1} = 4
\]
Thus, the answer is \( \boxed{4} \).