To find the projection of \( \mathbf{c} - 2\hat{j} \) on \( \mathbf{a} \), first compute the vectors \( \mathbf{b} \) and \( \mathbf{c} \) using the given cross products. Then, use the projection formula: \[ \text{Proj}_{\mathbf{a}} \mathbf{v} = \frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{a}|}. \] Substitute \( \mathbf{c} - 2\hat{j} \) and \( \mathbf{a} \) into the formula.
Final Answer: \( 2\sqrt{14} \).
Let the mean and variance of 7 observations 2, 4, 10, x, 12, 14, y, where x>y, be 8 and 16 respectively. Two numbers are chosen from \(\{1, 2, 3, x-4, y, 5\}\) one after another without replacement, then the probability, that the smaller number among the two chosen numbers is less than 4, is:
If the mean and the variance of the data 
are $\mu$ and 19 respectively, then the value of $\lambda + \mu$ is
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 