To find the projection of \( \mathbf{c} - 2\hat{j} \) on \( \mathbf{a} \), first compute the vectors \( \mathbf{b} \) and \( \mathbf{c} \) using the given cross products. Then, use the projection formula: \[ \text{Proj}_{\mathbf{a}} \mathbf{v} = \frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{a}|}. \] Substitute \( \mathbf{c} - 2\hat{j} \) and \( \mathbf{a} \) into the formula.
Final Answer: \( 2\sqrt{14} \).
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
