Step 1: Define the vectors.
\[
\mathbf{a} = 3\hat{i} - \hat{j} + 2\hat{k}
\]
\[
\mathbf{u} = \hat{i} - 2\hat{k}
\]
Given,
\[
\mathbf{b} = \mathbf{a} \times \mathbf{u}
\]
\[
\mathbf{c} = \mathbf{b} \times \hat{k}
\]
Step 2: Calculate \(\mathbf{b} = \mathbf{a} \times \mathbf{u}\).
\[
\mathbf{a} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
3 & -1 & 2 \\
1 & 0 & -2
\end{vmatrix}
= \hat{i}\begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} - \hat{j}\begin{vmatrix} 3 & 2 \\ 1 & -2 \end{vmatrix} + \hat{k}\begin{vmatrix} 3 & -1 \\ 1 & 0 \end{vmatrix}
\]
Calculate minors:
\[
\hat{i}((-1)(-2) - (0)(2)) - \hat{j}(3 \times -2 - 1 \times 2) + \hat{k}(3 \times 0 - 1 \times -1)
\]
\[
= \hat{i}(2) - \hat{j}(-6 - 2) + \hat{k}(0 + 1) = 2\hat{i} + 8\hat{j} + \hat{k}
\]
So,
\[
\mathbf{b} = 2\hat{i} + 8\hat{j} + \hat{k}
\]
Step 3: Calculate \(\mathbf{c} = \mathbf{b} \times \hat{k}\).
\[
\mathbf{b} \times \hat{k} =
\begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & 8 & 1 \\
0 & 0 & 1
\end{vmatrix}
= \hat{i}\begin{vmatrix} 8 & 1 \\ 0 & 1 \end{vmatrix} - \hat{j}\begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} + \hat{k}\begin{vmatrix} 2 & 8 \\ 0 & 0 \end{vmatrix}
\]
Calculate minors:
\[
\hat{i}(8 \times 1 - 0) - \hat{j}(2 \times 1 - 0) + \hat{k}(2 \times 0 - 0)
= 8\hat{i} - 2\hat{j} + 0\hat{k}
\]
\[
\mathbf{c} = 8\hat{i} - 2\hat{j}
\]
Step 4: Calculate \(\mathbf{c} - 2\hat{j}\).
\[
\mathbf{c} - 2\hat{j} = 8\hat{i} - 2\hat{j} - 2\hat{j} = 8\hat{i} - 4\hat{j}
\]
Step 5: Calculate the projection of \(\mathbf{c} - 2\hat{j}\) on \(\mathbf{a}\).
Projection formula:
\[
\text{proj}_{\mathbf{a}} (\mathbf{v}) = \frac{\mathbf{v} \cdot \mathbf{a}}{\|\mathbf{a}\|}
\]
Compute dot product:
\[
(8\hat{i} - 4\hat{j}) \cdot (3\hat{i} - \hat{j} + 2\hat{k}) = 8 \times 3 + (-4) \times (-1) + 0 = 24 + 4 = 28
\]
Compute magnitude of \(\mathbf{a}\):
\[
\|\mathbf{a}\| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 +1 +4} = \sqrt{14}
\]
Therefore, projection length:
\[
\frac{28}{\sqrt{14}} = 2 \sqrt{14}
\]
Final answer:
\[
\boxed{2 \sqrt{14}}
\]