To find the projection of \( \mathbf{c} - 2\hat{j} \) on \( \mathbf{a} \), first compute the vectors \( \mathbf{b} \) and \( \mathbf{c} \) using the given cross products. Then, use the projection formula: \[ \text{Proj}_{\mathbf{a}} \mathbf{v} = \frac{\mathbf{a} \cdot \mathbf{v}}{|\mathbf{a}|}. \] Substitute \( \mathbf{c} - 2\hat{j} \) and \( \mathbf{a} \) into the formula.
Final Answer: \( 2\sqrt{14} \).
If \[ f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, \quad f(0) = -6 \], then f(1) is equal to: