
Given inequalities: \[ p + 2 < 0 \Rightarrow p < -2 \] \[ 2p + 9 > 0 \Rightarrow p > -\frac{9}{2} \] For the discriminant \( D \ge 0 \): \[ (p + 2)^2 - 4(2p + 9) \ge 0 \] \[ p^2 + 4p + 4 - 8p - 36 \ge 0 \] \[ p^2 - 4p - 32 \ge 0 \] \[ (p - 8)(p + 4) \ge 0 \] \[ p \in (-\infty, -4] \cup [8, \infty) \] Considering both conditions together: \[ p \in \left[-\frac{9}{2}, -4\right] \] Now, \[ \alpha = -\frac{9}{2}, \quad \beta = -4 \] \[ \beta - 2\alpha = -4 + 9 = 5 \] \[ \boxed{\beta - 2\alpha = 5} \]
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.