Given inequalities: \[ p + 2 < 0 \Rightarrow p < -2 \] \[ 2p + 9 > 0 \Rightarrow p > -\frac{9}{2} \] For the discriminant \( D \ge 0 \): \[ (p + 2)^2 - 4(2p + 9) \ge 0 \] \[ p^2 + 4p + 4 - 8p - 36 \ge 0 \] \[ p^2 - 4p - 32 \ge 0 \] \[ (p - 8)(p + 4) \ge 0 \] \[ p \in (-\infty, -4] \cup [8, \infty) \] Considering both conditions together: \[ p \in \left[-\frac{9}{2}, -4\right] \] Now, \[ \alpha = -\frac{9}{2}, \quad \beta = -4 \] \[ \beta - 2\alpha = -4 + 9 = 5 \] \[ \boxed{\beta - 2\alpha = 5} \]
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.