A particle is projected at an angle of \( 30^\circ \) from horizontal at a speed of 60 m/s. The height traversed by the particle in the first second is \( h_0 \) and height traversed in the last second, before it reaches the maximum height, is \( h_1 \). The ratio \( \frac{h_0}{h_1} \) is __________. [Take \( g = 10 \, \text{m/s}^2 \)]
Step 2 — Time to reach maximum height:
\[ t_{\text{max}} = \frac{u_y}{g} = \frac{30}{10} = 3\ \text{s}. \] Step 3 — Height at any time \(t\):
\[ y = u_y t - \frac{1}{2} g t^2. \] Step 4 — Height traversed in the first second:
At \(t=1\): \[ h_0 = y(1) - y(0) = (30 \times 1 - \frac{1}{2} \times 10 \times 1^2) = 30 - 5 = 25\ \text{m}. \] Step 5 — Height traversed in the last second (i.e., between \(t=2\) and \(t=3\)):
\[ h_1 = y(3) - y(2). \] Now, \[ y(3) = 30(3) - \frac{1}{2}(10)(3)^2 = 90 - 45 = 45\ \text{m}, \] \[ y(2) = 30(2) - \frac{1}{2}(10)(2)^2 = 60 - 20 = 40\ \text{m}. \] Thus, \[ h_1 = 45 - 40 = 5\ \text{m}. \] Step 6 — Ratio of the heights:
\[ \frac{h_0}{h_1} = \frac{25}{5} = 5. \] Final Answer: \[ \boxed{\dfrac{h_0}{h_1} = 5.} \]
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: