The general wave equation is \( x(t) = A \cos(\omega t + \phi) \), where \( A \) is the amplitude, \( \omega \) is the angular frequency, and \( \phi \) is the phase constant.
The angular frequency \( \omega \) is related to the velocity \( v \) and the wavelength \( \lambda \) by the equation: \[ v = \frac{\omega}{k} \] where \( k = \frac{2\pi}{\lambda} \) is the wave number. Substituting \( \omega = 628 \, \text{rad/s} \) and \( v = 300 \, \text{m/s} \), we get: \[ 300 = \frac{628}{k} \] \[ k = \frac{628}{300} \approx 2.093 \, \text{rad/m} \] Now, using \( k = \frac{2\pi}{\lambda} \), we find: \[ \lambda = \frac{2\pi}{k} = \frac{2\pi}{2.093} \approx 3 \, \text{m} \]
Thus, the wavelength \( \lambda \) is approximately 0.5 m, and the correct answer is (2).
Match List-I with List-II on the basis of two simple harmonic signals of the same frequency and various phase differences interacting with each other:
LIST-I (Lissajous Figure) | LIST-II (Phase Difference) | ||
---|---|---|---|
A. | Right handed elliptically polarized vibrations | I. | Phase difference = \( \frac{\pi}{4} \) |
B. | Left handed elliptically polarized vibrations | II. | Phase difference = \( \frac{3\pi}{4} \) |
C. | Circularly polarized vibrations | III. | No phase difference |
D. | Linearly polarized vibrations | IV. | Phase difference = \( \frac{\pi}{2} \) |
Choose the correct answer from the options given below:
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: