For continuity at x = 0, we need \( f(0^-) = f(0) = f(0^+) \).
\( f(0^-) = \lim_{x \to 0^-} (1+ax)^{1/x} = e^{\lim_{x \to 0^-} \frac{1}{x} \ln(1+ax)} = e^{\lim_{x \to 0^-} \frac{ax}{x}} = e^a \)
\( f(0) = 1+b \)
\( f(0^+) = \lim_{x \to 0^+} \frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} \)
Using L'Hopital's rule:
\( f(0^+) = \lim_{x \to 0^+} \frac{\frac{1}{2}(x+4)^{-1/2}}{\frac{1}{3}(x+c)^{-2/3}} \)
\( f(0^+) = \frac{\frac{1}{2}(4)^{-1/2}}{\frac{1}{3}(c)^{-2/3}} = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{3} c^{-2/3}} = \frac{\frac{1}{4}}{\frac{1}{3} c^{-2/3}} = \frac{3}{4} c^{2/3} \)
From \( f(0^-) = f(0) \), we have \( e^a = 1+b \).
From \( f(0) = f(0^+) \), we have \( 1+b = \frac{3}{4} c^{2/3} \).
Also, we know that if \( (x+c)^{1/3} - 2 \) is in the denominator, then \( (x+c)^{1/3} - 2 = 0 \) at x = 0.
\( c^{1/3} - 2 = 0 \)
\( c^{1/3} = 2 \)
\( c = 8 \)
Now, \( 1+b = \frac{3}{4} (8)^{2/3} = \frac{3}{4} (2^3)^{2/3} = \frac{3}{4} \cdot 4 = 3 \)
\( b = 2 \)
Also, \( e^a = 1+b = 3 \)
\( a = \ln 3 \)
Therefore, \( e^a bc = 3 \cdot 2 \cdot 8 = 48 \)