To solve the given differential equation, we need to apply the integrating factor method. The differential equation provided is:
\(\frac{dy}{dx} + 3(\tan^2 x)y + 3y = \sec^2 x\)
Rewriting this equation, we get:
\(\frac{dy}{dx} + 3(1 + \tan^2 x)y = \sec^2 x\)
Here, \(3(1 + \tan^2 x) = 3\sec^2 x\). So, the equation becomes:
\(\frac{dy}{dx} + 3\sec^2 x \cdot y = \sec^2 x\)
Identifying this as a linear first-order differential equation in the standard form \(\frac{dy}{dx} + P(x)y = Q(x)\), where \(P(x) = 3\sec^2 x\) and \(Q(x) = \sec^2 x\).
The integrating factor (IF) is given by:
\(\text{IF} = e^{\int P(x) \, dx} = e^{\int 3\sec^2 x \, dx}\)
The integral of \(\sec^2 x\) is \(\tan x\), so:
\(\text{IF} = e^{3\tan x}\)
Multiplying the entire differential equation by this integrating factor, we have:
\(e^{3\tan x} \frac{dy}{dx} + 3\sec^2 x e^{3\tan x} y = \sec^2 x e^{3\tan x}\)
The left-hand side is a derivative of \(y \cdot e^{3\tan x}\). Therefore:
\(\frac{d}{dx} \left( y \cdot e^{3\tan x} \right) = \sec^2 x e^{3\tan x}\)
Integrating both sides with respect to \(x\) gives:
\(y \cdot e^{3\tan x} = \int \sec^2 x e^{3\tan x} \, dx + C\)
We already know the formula for the integration by parts. From integration, we have:
\(\int e^{3\tan x} \sec^2 x \, dx = \frac{e^{3\tan x}}{3}\)
Thus, the solution becomes:
\(y \cdot e^{3\tan x} = \frac{e^{3\tan x}}{3} + C\)
Solving for \(y\) gives:
\(y = \frac{1}{3} + C e^{-3\tan x}\)
Using the initial condition \(y(0) = \frac{1}{3} + e^3\), we substitute \(x = 0\):
\(\frac{1}{3} + e^3 = \frac{1}{3} + C e^{0}\)
This gives us \(C = e^3\).
Thus, the particular solution is:
\(y = \frac{1}{3} + e^3 e^{-3\tan x}\)
Substitute \(x = \frac{\pi}{4}\):
\(y\left(\frac{\pi}{4}\right) = \frac{1}{3} + e^3 e^{-3}\bigg(\tan\left(\frac{\pi}{4}\right)\bigg)\)
Since \(\tan\left(\frac{\pi}{4}\right) = 1\), we have:
\(y\left(\frac{\pi}{4}\right) = \frac{1}{3} + e^3 e^{-3}\)
This results in:
\(y\left(\frac{\pi}{4}\right) = \frac{1}{3} + 1\)
Thus, \(y\left(\frac{\pi}{4}\right) = \frac{4}{3}\).
Therefore, the correct answer is: \(\frac{4}{3}\)
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: