The given differential equation is:
\[
\frac{dy}{dx} + 3(\tan^2 x) y + 3y = \sec^2 x
\]
\[
\frac{dy}{dx} + 3(\tan^2 x + 1) y = \sec^2 x
\]
Using the identity \( \tan^2 x + 1 = \sec^2 x \):
\[
\frac{dy}{dx} + 3\sec^2 x \cdot y = \sec^2 x
\]
This is a linear differential equation of the form \( \frac{dy}{dx} + P(x) y = Q(x) \), where \( P(x) = 3\sec^2 x \) and \( Q(x) = \sec^2 x \).
The integrating factor (IF) is given by \( e^{\int P(x) dx} \):
\[
IF = e^{\int 3\sec^2 x dx} = e^{3\tan x}
\]
The solution of the linear differential equation is:
\[
y \cdot IF = \int Q(x) \cdot IF \, dx + c
\]
\[
y \cdot e^{3\tan x} = \int \sec^2 x \cdot e^{3\tan x} \, dx + c
\]
Let \( u = 3\tan x \), then \( du = 3\sec^2 x \, dx \), so \( \sec^2 x \, dx = \frac{1}{3} du \).
\[
y \cdot e^{3\tan x} = \int e^u \cdot \frac{1}{3} \, du + c
\]
\[
y \cdot e^{3\tan x} = \frac{1}{3} e^u + c
\]
Substitute back \( u = 3\tan x \):
\[
y \cdot e^{3\tan x} = \frac{1}{3} e^{3\tan x} + c
\]
Given the initial condition \( y(0) = \frac{1}{3} + e^3 \). When \( x = 0 \), \( \tan(0) = 0 \).
\[
\left(\frac{1}{3} + e^3\right) e^{3(0)} = \frac{1}{3} e^{3(0)} + c
\]
\[
\frac{1}{3} + e^3 = \frac{1}{3} (1) + c
\]
\[
\frac{1}{3} + e^3 = \frac{1}{3} + c
\]
\[
c = e^3
\]
The particular solution is:
\[
y \cdot e^{3\tan x} = \frac{1}{3} e^{3\tan x} + e^3
\]
We need to find \( y\left(\frac{\pi}{4}\right) \). When \( x = \frac{\pi}{4} \), \( \tan\left(\frac{\pi}{4}\right) = 1 \).
\[
y \cdot e^{3(1)} = \frac{1}{3} e^{3(1)} + e^3
\]
\[
y \cdot e^3 = \frac{1}{3} e^3 + e^3
\]
Divide by \( e^3 \):
\[
y = \frac{1}{3} + 1 = \frac{4}{3}
\]
So, \( y\left(\frac{\pi}{4}\right) = \frac{4}{3} \).