Step 1: Solve the given first-order linear differential equation. The equation given is: \[ \frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1 - x^2}}. \] This is a linear differential equation of the form: \[ \frac{dy}{dx} + P(x)y = Q(x), \] where \[ P(x) = \frac{x}{x^2 - 1}, \quad Q(x) = \frac{x^6 + 4x}{\sqrt{1 - x^2}}. \] The integrating factor (IF) is given by: \[ IF = e^{\int P(x)dx} = e^{\int \frac{x}{x^2 - 1} dx}. \] Using substitution \( u = x^2 - 1 \), \( du = 2x dx \), we get: \[ \int \frac{x}{x^2 - 1}dx = \frac{1}{2} \ln |x^2 - 1|. \] Thus, the integrating factor is: \[ IF = |x^2 - 1|^{1/2}. \] Multiplying throughout by the integrating factor and solving for \( f(x) \), we integrate the right-hand side and use \( f(0) = 0 \) to find the particular solution.
Step 2: Solve the given integral condition. Given: \[ 6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha. \] Substituting the obtained function \( f(x) \) and integrating, we find \( \alpha = 2 \). Thus, \( \alpha^2 = 4 \).
Final answer: \( \boxed{4} \).
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).