We are solving the differential equation:
\( \cos x (\ln(\cos x))^2 \, dy + (\sin x - 3y \sin x \ln(\cos x)) \, dx = 0 \)
Rearranging terms and dividing through by \( \cos x (\ln(\cos x))^2 \), we get:
\( \frac{dy}{dx} - \frac{3 \tan x}{\ln(\cos x)} y = -\frac{\tan x}{(\ln(\cos x))^2} \)
Since \( \ln(\cos x) = -\ln(\sec x) \), the equation becomes:
\( \frac{dy}{dx} + \frac{3 \tan x}{\ln(\sec x)} y = -\frac{\tan x}{(\ln(\sec x))^2} \)
1. Finding the Integrating Factor (I.F.):
The integrating factor is given by:
\( I.F. = e^{\int \frac{3 \tan x}{\ln(\sec x)} \, dx} \)
To compute this, note that:
\( \int \frac{\tan x}{\ln(\sec x)} \, dx = \ln(\ln(\sec x)) \)
Thus:
\( I.F. = e^{3 \ln(\ln(\sec x))} = (\ln(\sec x))^3 \)
2. Solving the Differential Equation:
Multiply through by the integrating factor \( (\ln(\sec x))^3 \):
\( y \cdot (\ln(\sec x))^3 = -\int \frac{\tan x}{(\ln(\sec x))^2} \cdot (\ln(\sec x))^3 \, dx \)
Simplify the integral:
\( y \cdot (\ln(\sec x))^3 = -\int \tan x \cdot \ln(\sec x) \, dx \)
Using substitution \( u = \ln(\sec x) \), \( du = \tan x \, dx \):
\( y \cdot (\ln(\sec x))^3 = -\int u \, du = -\frac{u^2}{2} + C = -\frac{(\ln(\sec x))^2}{2} + C \)
3. Applying the Initial Condition:
We are given \( x = \frac{\pi}{4} \) and \( y = -\frac{1}{\ln 2} \). Substituting these values:
\( -\frac{1}{\ln 2} \cdot (\ln(\sqrt{2}))^3 = -\frac{1}{2} \cdot (\ln(\sqrt{2}))^2 + C \)
Note that \( \ln(\sqrt{2}) = \frac{1}{2} \ln 2 \):
\( -\frac{1}{\ln 2} \cdot \left(\frac{1}{2} \ln 2\right)^3 = -\frac{1}{2} \cdot \left(\frac{1}{2} \ln 2\right)^2 + C \)
Simplify:
\( -\frac{1}{8 (\ln 2)^2} \cdot (\ln 2)^3 = -\frac{1}{8 (\ln 2)^2} \cdot (\ln 2)^2 + C \)
\( -\frac{1}{8} (\ln 2)^2 = -\frac{1}{8} (\ln 2)^2 + C \)
\( C = 0 \)
4. Final Solution:
The solution becomes:
\( y \cdot (\ln(\sec x))^3 = -\frac{1}{2} (\ln(\sec x))^2 \)
Divide through by \( (\ln(\sec x))^3 \):
\( y = -\frac{1}{2 \ln(\sec x)} \)
Since \( \ln(\sec x) = -\ln(\cos x) \):
\( y = \frac{1}{2 \ln(\cos x)} \)
5. Evaluating \( y \) at \( x = \frac{\pi}{6} \):
Substitute \( x = \frac{\pi}{6} \):
\( y = \frac{1}{2 \ln(\cos \frac{\pi}{6})} \)
\( \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2} \):
\( y = \frac{1}{2 \ln\left(\frac{\sqrt{3}}{2}\right)} \)
Using \( \ln\left(\frac{\sqrt{3}}{2}\right) = \frac{1}{2} \ln 3 - \ln 2 \):
\( y = \frac{1}{2 \left(\frac{1}{2} \ln 3 - \ln 2\right)} = \frac{1}{\ln 3 - \ln 4} \)
Final Answer:
The value of \( y \) at \( x = \frac{\pi}{6} \) is \( \frac{1}{\ln 3 - \ln 4} \).
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
