Question:

Let \( \vec{a} \times \vec{b} = 7\hat{i} - 5\hat{j} - 4\hat{k} \) and \( \vec{a} = \hat{i} + 3\hat{j} - 2\hat{k} \), if the length of projection of \( \vec{b} \) on \( \vec{a} \) is \( \frac{8}{\sqrt{14}} \), then \( |\vec{b}| \) is:

Show Hint

When dealing with vector projections and cross products, recall that the magnitude of the cross product gives the area, and the projection of one vector on another is calculated using the dot product formula.
Updated On: Mar 19, 2025
  • \( 121 \)
  • \( \sqrt{12} \)
  • \( \sqrt{11} \)
  • \( 144 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

 \[ \vec{a} \times \vec{b} = 7\hat{i} - 5\hat{j} - 4\hat{k} \] \[ \vec{a} = \hat{i} + 3\hat{j} - 2\hat{k} \] The length of the projection of \( \vec{b} \) on \( \vec{a} \) is \( \frac{8}{\sqrt{14}} \). 

Step 1: Find \( |\vec{a}| \) 
\[ |\vec{a}| = \sqrt{(1)^2 + (3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \] 

Step 2: Recall Projection Formula 
The projection of \( \vec{b} \) on \( \vec{a} \) is given by: \[ \text{Proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \] Let \( \vec{a} \cdot \vec{b} = k \), so: \[ \frac{k}{\sqrt{14}} = \frac{8}{\sqrt{14}} \] From this, \[ k = 8 \] 

Step 3: Cross Product Magnitude Identity 
By the cross product identity: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Where \( \sin \theta = \sqrt{1 - \cos^2 \theta} \). Since \( \cos \theta = \frac{k}{|\vec{a}| |\vec{b}|} \), we get: \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|}\right)^2} \] Now, \[ |\vec{a} \times \vec{b}| = \sqrt{(7)^2 + (-5)^2 + (-4)^2} = \sqrt{49 + 25 + 16} = \sqrt{90} \] \[ \sqrt{90} = \sqrt{14} |\vec{b}| \sin \theta \] \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|} \right)^2} = \sqrt{\frac{|\vec{b}|^2 \cdot 14 - 64}{14 |\vec{b}|^2}} \] Now, \[ \sqrt{90} = \sqrt{14} |\vec{b}| \cdot \sqrt{\frac{14|\vec{b}|^2 - 64}{14|\vec{b}|^2}} \] Equating and simplifying, \[ 90 = 14|\vec{b}|^2 - 64 \] \[ 14|\vec{b}|^2 = 154 \] \[ |\vec{b}|^2 = 11 \] \[ |\vec{b}| = \sqrt{11} \] 

Final Answer: (C) \( \sqrt{11} \)

Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions