\[ \vec{a} \times \vec{b} = 7\hat{i} - 5\hat{j} - 4\hat{k} \] \[ \vec{a} = \hat{i} + 3\hat{j} - 2\hat{k} \] The length of the projection of \( \vec{b} \) on \( \vec{a} \) is \( \frac{8}{\sqrt{14}} \).
Step 1: Find \( |\vec{a}| \)
\[ |\vec{a}| = \sqrt{(1)^2 + (3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \]
Step 2: Recall Projection Formula
The projection of \( \vec{b} \) on \( \vec{a} \) is given by: \[ \text{Proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \] Let \( \vec{a} \cdot \vec{b} = k \), so: \[ \frac{k}{\sqrt{14}} = \frac{8}{\sqrt{14}} \] From this, \[ k = 8 \]
Step 3: Cross Product Magnitude Identity
By the cross product identity: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Where \( \sin \theta = \sqrt{1 - \cos^2 \theta} \). Since \( \cos \theta = \frac{k}{|\vec{a}| |\vec{b}|} \), we get: \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|}\right)^2} \] Now, \[ |\vec{a} \times \vec{b}| = \sqrt{(7)^2 + (-5)^2 + (-4)^2} = \sqrt{49 + 25 + 16} = \sqrt{90} \] \[ \sqrt{90} = \sqrt{14} |\vec{b}| \sin \theta \] \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|} \right)^2} = \sqrt{\frac{|\vec{b}|^2 \cdot 14 - 64}{14 |\vec{b}|^2}} \] Now, \[ \sqrt{90} = \sqrt{14} |\vec{b}| \cdot \sqrt{\frac{14|\vec{b}|^2 - 64}{14|\vec{b}|^2}} \] Equating and simplifying, \[ 90 = 14|\vec{b}|^2 - 64 \] \[ 14|\vec{b}|^2 = 154 \] \[ |\vec{b}|^2 = 11 \] \[ |\vec{b}| = \sqrt{11} \]
Final Answer: (C) \( \sqrt{11} \)
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to:
A hydrocarbon containing C and H has 92.3% C. When 39 g of hydrocarbon was completely burnt in O2, x moles of water and y moles of CO2 were formed. x moles of water is sufficient to liberate 0.75 moles of H2 with Na metal. What is the weight (in g) of oxygen consumed?