\[ \vec{a} \times \vec{b} = 7\hat{i} - 5\hat{j} - 4\hat{k} \] \[ \vec{a} = \hat{i} + 3\hat{j} - 2\hat{k} \] The length of the projection of \( \vec{b} \) on \( \vec{a} \) is \( \frac{8}{\sqrt{14}} \).
Step 1: Find \( |\vec{a}| \)
\[ |\vec{a}| = \sqrt{(1)^2 + (3)^2 + (-2)^2} = \sqrt{1 + 9 + 4} = \sqrt{14} \]
Step 2: Recall Projection Formula
The projection of \( \vec{b} \) on \( \vec{a} \) is given by: \[ \text{Proj}_{\vec{a}} \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \] Let \( \vec{a} \cdot \vec{b} = k \), so: \[ \frac{k}{\sqrt{14}} = \frac{8}{\sqrt{14}} \] From this, \[ k = 8 \]
Step 3: Cross Product Magnitude Identity
By the cross product identity: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Where \( \sin \theta = \sqrt{1 - \cos^2 \theta} \). Since \( \cos \theta = \frac{k}{|\vec{a}| |\vec{b}|} \), we get: \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|}\right)^2} \] Now, \[ |\vec{a} \times \vec{b}| = \sqrt{(7)^2 + (-5)^2 + (-4)^2} = \sqrt{49 + 25 + 16} = \sqrt{90} \] \[ \sqrt{90} = \sqrt{14} |\vec{b}| \sin \theta \] \[ \sin \theta = \sqrt{1 - \left(\frac{8}{\sqrt{14} |\vec{b}|} \right)^2} = \sqrt{\frac{|\vec{b}|^2 \cdot 14 - 64}{14 |\vec{b}|^2}} \] Now, \[ \sqrt{90} = \sqrt{14} |\vec{b}| \cdot \sqrt{\frac{14|\vec{b}|^2 - 64}{14|\vec{b}|^2}} \] Equating and simplifying, \[ 90 = 14|\vec{b}|^2 - 64 \] \[ 14|\vec{b}|^2 = 154 \] \[ |\vec{b}|^2 = 11 \] \[ |\vec{b}| = \sqrt{11} \]
Final Answer: (C) \( \sqrt{11} \)
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).