We are given two functions: \[ f(x) = \frac{1}{11 \cos 2x + 60 \sin 2x + 69} \] \[ g(x) = 3 \cos^2 5x + 4 \sin^2 5x \] Step 1: Finding \(M_1\) We need to determine the maximum value of: \[ f(x) = \frac{1}{11 \cos 2x + 60 \sin 2x + 69} \] Step 1a: Express in the Form \( R \cos(2x - \theta) \) We use the identity: \[ a \cos \theta + b \sin \theta = R \cos(\theta - \alpha) \] Where \( R = \sqrt{a^2 + b^2} \). Here, \[ R = \sqrt{11^2 + 60^2} = \sqrt{121 + 3600} = \sqrt{3721} = 61 \] Now, \[ 11 \cos 2x + 60 \sin 2x = 61 \cos(2x - \alpha) \] Thus, \[ f(x) = \frac{1}{61 \cos(2x - \alpha) + 69} \] The maximum value occurs when \( \cos(2x - \alpha) = 1 \). \[ f_{\max} = \frac{1}{61 \times 1 + 69} = \frac{1}{130} \] Step 2: Finding \(M_2\) We need to determine the maximum value of: \[ g(x) = 3 \cos^2 5x + 4 \sin^2 5x \] Using the identity: \[ \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \quad \text{and} \quad \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \] \[ g(x) = 3\left(\frac{1 + \cos 10x}{2}\right) + 4\left(\frac{1 - \cos 10x}{2}\right) \] \[ g(x) = \frac{3(1 + \cos 10x) + 4(1 - \cos 10x)}{2} \] \[ g(x) = \frac{3 + 3\cos 10x + 4 - 4\cos 10x}{2} \] \[ g(x) = \frac{7 - \cos 10x}{2} \] The maximum value occurs when \( \cos 10x = -1 \). \[ M_2 = \frac{7 - (-1)}{2} = \frac{8}{2} = 4 \] Step 3: Calculate \( \frac{M_1}{M_2} \) \[ \frac{M_1}{M_2} = \frac{\frac{1}{130}}{4} = \frac{1}{520} = \frac{1}{32} \] Step 4: Final Answer
\[Correct Answer: (2) \ \frac{1}{32}\]Define \( f(x) = \begin{cases} x^2 + bx + c, & x< 1 \\ x, & x \geq 1 \end{cases} \). If f(x) is differentiable at x=1, then b−c is equal to
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?