Question:

If \[ x = 3 \left[ \sin t - \log \left( \cot \frac{t}{2} \right) \right], \quad y = 6 \left[ \cos t + \log \left( \tan \frac{t}{2} \right) \right] \] then find \( \frac{dy}{dx} \).

Show Hint

For parametric differentiation, use chain rule: \( \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \) and simplify using trigonometric identities.
Updated On: Mar 19, 2025
  • \( \frac{2\sin^2 t}{1 + \sin t \cos t} \)
  • \( \frac{2\cos^2 t}{1 + \sin 2t} \)
  • \( \frac{2\cos^2 t}{1 + \sin t \cos t} \)
  • \( \frac{1 + \cos 2t}{1 + \sin 2t} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Differentiating parametric equations We use: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}. \] Differentiating \( x(t) \) and \( y(t) \), simplifying the expression, and substituting known identities yield: \[ \frac{dy}{dx} = \frac{2\cos^2 t}{1 + \sin t \cos t}. \]
Was this answer helpful?
0
0