We are given a point \( P(1, 2, 3) \) and a plane equation \( 3x - 4y + 12z - 7 = 0 \). To find the distance of point \( P \) from the plane, we use the formula for the distance from a point \( (x_1, y_1, z_1) \) to a plane \( ax + by + cz + d = 0 \): \[ d = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}} \] Where \( a = 3 \), \( b = -4 \), \( c = 12 \), and \( d = -7 \). The coordinates of \( P \) are \( (1, 2, 3) \).
Step 1: Substitute the coordinates of \( P \) into the plane equation. Substitute \( x_1 = 1 \), \( y_1 = 2 \), and \( z_1 = 3 \) into the plane equation: \[ 3(1) - 4(2) + 12(3) - 7 = 3 - 8 + 36 - 7 = 24 \]
Step 2: Calculate the distance. Now, substitute the value \( 24 \) into the distance formula: \[ d = \frac{|24|}{\sqrt{3^2 + (-4)^2 + 12^2}} = \frac{24}{\sqrt{9 + 16 + 144}} = \frac{24}{\sqrt{169}} = \frac{24}{13} \] Therefore, the distance is \( \frac{24}{13} \), which simplifies to \( \frac{2}{\sqrt{14}} \) after simplification.
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).