Step 1: Use scalar triple product identity
The scalar triple product is defined as:
\[
[\vec{a}
\vec{b}
\vec{c}] = \vec{a} . (\vec{b} \times \vec{c})
\]
Given that \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar, their scalar triple product is non-zero. Use linearity of scalar triple product:
\[
[3\vec{u}
p\vec{v}
p\vec{w}] = 3p^2[\vec{u}
\vec{v}
\vec{w}]
\]
\[
[p\vec{v}
\vec{w}
q\vec{u}] = pq[\vec{v}
\vec{w}
\vec{u}] = -pq[\vec{u}
\vec{v}
\vec{w}]
\]
\[
[2\vec{w}
q\vec{v}
q\vec{u}] = 2q^2[\vec{w}
\vec{v}
\vec{u}] = -2q^2[\vec{u}
\vec{v}
\vec{w}]
\]
So the full expression becomes:
\[
3p^2[\vec{u}
\vec{v}
\vec{w}] - (-pq[\vec{u}
\vec{v}
\vec{w}]) - (-2q^2[\vec{u}
\vec{v}
\vec{w}])
\]
\[
= (3p^2 + pq + 2q^2)[\vec{u}
\vec{v}
\vec{w}]
\]
Set this equal to 0:
\[
(3p^2 + pq + 2q^2)[\vec{u}
\vec{v}
\vec{w}] = 0
\Rightarrow 3p^2 + pq + 2q^2 = 0
\]
Step 2: Solve the quadratic in two variables
We solve for real values \( (p, q) \) that satisfy:
\[
3p^2 + pq + 2q^2 = 0
\]
This is a homogeneous quadratic in \( p \) and \( q \). Try \( p = kq \) and substitute:
\[
3k^2q^2 + kq^2 + 2q^2 = 0 \Rightarrow q^2(3k^2 + k + 2) = 0
\Rightarrow 3k^2 + k + 2 = 0
\]
Solve using quadratic formula:
\[
k = \frac{-1 \pm \sqrt{1^2 - 4(3)(2)}}{2(3)} = \frac{-1 \pm \sqrt{1 - 24}}{6} = \frac{-1 \pm \sqrt{-23}}{6}
\]
No real solution the equation has only one real solution when we solve directly in terms of \( (p, q) \).
Try solving:
\[
3p^2 + pq + 2q^2 = 0
\]
Using discriminant method (treat as quadratic in \( p \)):
\[
\Delta = (q)^2 - 4(3)(2q^2) = q^2 - 24q^2 = -23q^2<0
\]
No real solutions unless \( q = 0 \). Try \( q = 0 \Rightarrow 3p^2 = 0 \Rightarrow p = 0 \)
So only solution: \( (p, q) = (0, 0) \)
Exactly one ordered pair of \( (p, q) \) satisfies the equation.