The osmotic pressure \(\pi\) is given by the formula:
\[
\pi = \frac{nRT}{V}
\]
Where:
- \(n\) = number of moles of urea,
- \(R\) = gas constant = 0.082 L atm K$^{-1}$ mol$^{-1}$,
- \(T\) = temperature in Kelvin = 300 K,
- \(V\) = volume of solution in liters = 500 mL = 0.5 L.
First, calculate the number of moles of urea:
\[
\text{Molar mass of urea (NH}_2\text{CONH}_2) = 12 + 2(1) + 16 + 2(14) = 60 \, \text{g/mol}.
\]
\[
n = \frac{\text{mass of urea}}{\text{molar mass}} = \frac{6}{60} = 0.1 \, \text{mol}.
\]
Now, calculate the osmotic pressure:
\[
\pi = \frac{0.1 \times 0.082 \times 300}{0.5} = 4.92 \, \text{atm}.
\]