Step 1: Calculate the mass of urea
\[
\text{Mass of urea} = \frac{6}{100} \times 1000 = 60 \, \text{g}
\]
Step 2: Determine the molar mass of urea (CO(NH\(_2\))\(_2\))
\[
\text{Molar mass of urea} = 12 + (2 \times 14) + (1 \times 4) + (16 \times 1) = 60 \, \text{g/mol}
\]
Step 3: Calculate the number of moles of urea
\[
\text{Moles of urea} = \frac{\text{Mass of urea}}{\text{Molar mass of urea}} = \frac{60}{60} = 1 \, \text{mol}
\]
Step 4: Calculate the volume of solution
\[
\text{Total weight of solution} = 1000 \, \text{g}, \quad \text{Density of solution} = 1 \, \text{g/mL}
\]
\[
\text{Volume of solution} = \frac{1000}{1} = 1000 \, \text{mL} = 1 \, \text{L}
\]
Step 5: Calculate the molarity
\[
\text{Molarity} = \frac{\text{Moles of solute}}{\text{Volume of solution in L}} = \frac{1}{0.94} \approx 1.064 \, \text{mol/L}
\]
Thus, the correct answer is \(\mathbf{1.064 \, mol/L}\).