\(\frac{1}{4}\) only
The correct answer is (D) : any a > 0
\(P:y²=4ax, a > 0 \) \(S(a,0)\)
Equation of tangent on parabola
\(y = mx + \frac{a}{m}\)
y = 3x + 5
\(tan \frac{π}{4} = |\frac{m-3}{1+3m} | ⇒ m-3 = ± ( 1+3m )\)
m-3 = 1+3m
m=-2
m-3 = -1-3m
\(m=\frac{1}{2}\)
Equation of one tangent :\( y = -2x - \frac{a}{2}\)
Equation of other tangent : \(y = \frac{x}{2} + 2a\)
Point of contact are
\(( \frac{a}{(-2)²} , \frac{-2a}{(-2)} ) and ( \frac{a}{(\frac{1}{2})²} , \frac{-2a}{\frac{1}{2}} )\)
\(A ( \frac{a}{4},a)\) and \(B (4a,-4a)\)
Now or \((ΔABS)\) = 0 [ S is the focus ]
\(\frac{1}{2} \begin{vmatrix} \frac{a}{4} & a & 1 \\ 4a & -4a & 1 \\ a& 0 & 1 \end{vmatrix} = 0\)
\(⇒ \frac{a}{4} (-4a-0) -a(4a-a) + 1(0-(-4a²)) = 0\)
\(= -a² -3a² + 4a² = 0\)
Always true
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
Parabola is defined as the locus of points equidistant from a fixed point (called focus) and a fixed-line (called directrix).
=> MP2 = PS2
=> MP2 = PS2
So, (b + y)2 = (y - b)2 + x2