To find the dissociation constant \(K_a\) for the weak acid HA, we need to use the principle of freezing point depression. Here are the steps for the calculation:
Therefore, the correct answer is \( 1.38 \times 10^{-3} \).
Step 1: Calculate van't Hoff factor (i) \[ \Delta T_f = i \cdot K_f \cdot m 0.20 = i \times 1.8 \times 0.1 i = \frac{0.20}{0.18} = 1.11 \]
Step 2: Relate i to degree of dissociation \((\alpha)\) For weak acid dissociation: \[ i = 1 + \alpha 1.11 = 1 + \alpha \alpha = 0.11 \]
Step 3: Calculate dissociation constant \((K_a)\) \[ K_a = \frac{C \alpha^2}{1 - \alpha} = \frac{0.1 \times (0.11)^2}{1 - 0.11} = \frac{0.1 \times 0.0121}{0.89} = 1.36 \times 10^{-3} \approx 1.38 \times 10^{-3} \]
Given below are two statements:
Statement (I): Molal depression constant $ k_f $ is given by $ \frac{M_1 R T_f}{\Delta S_{\text{fus}}} $, where symbols have their usual meaning.
Statement (II): $ k_f $ for benzene is less than the $ k_f $ for water.
In light of the above statements, choose the most appropriate answer from the options given below:
If \(A_2B \;\text{is} \;30\%\) ionised in an aqueous solution, then the value of van’t Hoff factor \( i \) is:
1.24 g of \(AX_2\) (molar mass 124 g mol\(^{-1}\)) is dissolved in 1 kg of water to form a solution with boiling point of 100.105°C, while 2.54 g of AY_2 (molar mass 250 g mol\(^{-1}\)) in 2 kg of water constitutes a solution with a boiling point of 100.026°C. \(Kb(H)_2\)\(\text(O)\) = 0.52 K kg mol\(^{-1}\). Which of the following is correct?
Figure shows a current carrying square loop ABCD of edge length is $ a $ lying in a plane. If the resistance of the ABC part is $ r $ and that of the ADC part is $ 2r $, then the magnitude of the resultant magnetic field at the center of the square loop is: 