Step 1: Calculate van't Hoff factor (i) \[ \Delta T_f = i \cdot K_f \cdot m 0.20 = i \times 1.8 \times 0.1 i = \frac{0.20}{0.18} = 1.11 \]
Step 2: Relate i to degree of dissociation \((\alpha)\) For weak acid dissociation: \[ i = 1 + \alpha 1.11 = 1 + \alpha \alpha = 0.11 \]
Step 3: Calculate dissociation constant \((K_a)\) \[ K_a = \frac{C \alpha^2}{1 - \alpha} = \frac{0.1 \times (0.11)^2}{1 - 0.11} = \frac{0.1 \times 0.0121}{0.89} = 1.36 \times 10^{-3} \approx 1.38 \times 10^{-3} \]
Give reasons:
(a) Cooking is faster in a pressure cooker than in an open pan.
(b) On mixing liquid X and liquid Y, volume of the resulting solution decreases. What type of deviation from Raoult's law is shown by the resulting solution?
© What change in temperature would you observe after mixing liquids X and Y?
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: