The equation of a parabola is given by the definition: the distance from any point on the parabola to the focus is equal to the perpendicular distance from the point to the directrix.
Given:
- Focus \( F = (-2, 1) \)
- Directrix: \( 2x + y + 2 = 0 \)
The distance from the point \( P(x_1, y_1) \) on the parabola to the focus is: \[ \text{Distance to focus} = \sqrt{(x_1 + 2)^2 + (y_1 - 1)^2} \] The distance from \( P(x_1, y_1) \) to the directrix \( 2x + y + 2 = 0 \) is: \[ \text{Distance to directrix} = \frac{|2x_1 + y_1 + 2|}{\sqrt{2^2 + 1^2}} = \frac{|2x_1 + y_1 + 2|}{\sqrt{5}} \] For \( x_1 = -2 \), we substitute \( x_1 = -2 \) into both expressions: \[ \sqrt{(-2 + 2)^2 + (y_1 - 1)^2} = \frac{|2(-2) + y_1 + 2|}{\sqrt{5}} \] Simplifying both sides, we solve for \( y_1 \). After solving, we find: \[ y_1 = \frac{3}{2} \]
Thus, the sum of the ordinates of the points on the parabola is \( \frac{3}{2} \).
If \( x^2 = -16y \) is an equation of a parabola, then:
(A) Directrix is \( y = 4 \)
(B) Directrix is \( x = 4 \)
(C) Co-ordinates of focus are \( (0, -4) \)
(D) Co-ordinates of focus are \( (-4, 0) \)
(E) Length of latus rectum is 16
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
The net current flowing in the given circuit is ___ A.
If the equation \( a(b - c)x^2 + b(c - a)x + c(a - b) = 0 \) has equal roots, where \( a + c = 15 \) and \( b = \frac{36}{5} \), then \( a^2 + c^2 \) is equal to .