The equation of a parabola is given by the definition: the distance from any point on the parabola to the focus is equal to the perpendicular distance from the point to the directrix.
Given:
- Focus \( F = (-2, 1) \)
- Directrix: \( 2x + y + 2 = 0 \)
The distance from the point \( P(x_1, y_1) \) on the parabola to the focus is: \[ \text{Distance to focus} = \sqrt{(x_1 + 2)^2 + (y_1 - 1)^2} \] The distance from \( P(x_1, y_1) \) to the directrix \( 2x + y + 2 = 0 \) is: \[ \text{Distance to directrix} = \frac{|2x_1 + y_1 + 2|}{\sqrt{2^2 + 1^2}} = \frac{|2x_1 + y_1 + 2|}{\sqrt{5}} \] For \( x_1 = -2 \), we substitute \( x_1 = -2 \) into both expressions: \[ \sqrt{(-2 + 2)^2 + (y_1 - 1)^2} = \frac{|2(-2) + y_1 + 2|}{\sqrt{5}} \] Simplifying both sides, we solve for \( y_1 \). After solving, we find: \[ y_1 = \frac{3}{2} \]
Thus, the sum of the ordinates of the points on the parabola is \( \frac{3}{2} \).
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: