Resonance in X$_2$Y can be represented as 
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
Solution:
The given structure of X2Y shows resonance forms. The resonance energy is the stabilization energy due to this delocalization.
Steps to find the resonance energy:
Calculation:
If we assume the expected enthalpy without resonance is around 178 kJ mol-1, then:
This value fits within the expected range of 98-98 kJ mol-1.
Conclusion: The magnitude of resonance energy of X2Y is 98 kJ mol-1.
Step 1: Determine the expected enthalpy of formation using bond energies.
- Break \( X = X \) bond: \( +940 \, \text{kJ mol}^{-1} \).
- Break \( \frac{1}{2} Y = Y \) bond: \( +\frac{1}{2} \times 500 = 250 \, \text{kJ mol}^{-1} \).
- Total energy input = \( 940 + 250 = 1190 \, \text{kJ mol}^{-1} \).
Step 2: Energy released when forming bonds in \( X_2Y \).
- Assume one \( X - X \) bond (\( 410 \, \text{kJ mol}^{-1} \)) and one \( X - Y \) bond (\( 602 \, \text{kJ mol}^{-1} \)).
- Total energy released = \( 410 + 602 = 1012 \, \text{kJ mol}^{-1} \).
Step 3: Calculate expected enthalpy change.
- Expected \( \Delta H = 1190 - 1012 = 178 \, \text{kJ mol}^{-1} \).
Step 4: Calculate resonance energy.
- Given enthalpy of formation = \( 80 \, \text{kJ mol}^{-1} \).
- Resonance energy = Expected \( \Delta H \) - Actual \( \Delta H \).
- Resonance energy = \( 178 - 80 = 98 \, \text{kJ mol}^{-1} \).
Step 5: Verify. - The resonance structures suggest partial triple bond character,
stabilizing the molecule, aligning with the calculated value.
The magnitude of the resonance energy, to the nearest integer, is \( 98 \, \text{kJ mol}^{-1} \).
What is the empirical formula of a compound containing 40% sulfur and 60% oxygen by mass?
Match the LIST-I with LIST-II.
Choose the correct answer from the options given below :
Which of the following molecules(s) show/s paramagnetic behavior?
$\mathrm{O}_{2}$
$\mathrm{N}_{2}$
$\mathrm{F}_{2}$
$\mathrm{S}_{2}$
Given below are two statements:
Statement I : The N-N single bond is weaker and longer than that of P-P single bond
Statement II : Compounds of group 15 elements in +3 oxidation states readily undergo disproportionation reactions.
In the light of above statements, choose the correct answer from the options given below
For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: