Resonance in X$_2$Y can be represented as 
The enthalpy of formation of X$_2$Y is 80 kJ mol$^{-1}$, and the magnitude of resonance energy of X$_2$Y is:
Solution:
The given structure of X2Y shows resonance forms. The resonance energy is the stabilization energy due to this delocalization.
Steps to find the resonance energy:
Calculation:
If we assume the expected enthalpy without resonance is around 178 kJ mol-1, then:
This value fits within the expected range of 98-98 kJ mol-1.
Conclusion: The magnitude of resonance energy of X2Y is 98 kJ mol-1.
Step 1: Determine the expected enthalpy of formation using bond energies.
- Break \( X = X \) bond: \( +940 \, \text{kJ mol}^{-1} \).
- Break \( \frac{1}{2} Y = Y \) bond: \( +\frac{1}{2} \times 500 = 250 \, \text{kJ mol}^{-1} \).
- Total energy input = \( 940 + 250 = 1190 \, \text{kJ mol}^{-1} \).
Step 2: Energy released when forming bonds in \( X_2Y \).
- Assume one \( X - X \) bond (\( 410 \, \text{kJ mol}^{-1} \)) and one \( X - Y \) bond (\( 602 \, \text{kJ mol}^{-1} \)).
- Total energy released = \( 410 + 602 = 1012 \, \text{kJ mol}^{-1} \).
Step 3: Calculate expected enthalpy change.
- Expected \( \Delta H = 1190 - 1012 = 178 \, \text{kJ mol}^{-1} \).
Step 4: Calculate resonance energy.
- Given enthalpy of formation = \( 80 \, \text{kJ mol}^{-1} \).
- Resonance energy = Expected \( \Delta H \) - Actual \( \Delta H \).
- Resonance energy = \( 178 - 80 = 98 \, \text{kJ mol}^{-1} \).
Step 5: Verify. - The resonance structures suggest partial triple bond character,
stabilizing the molecule, aligning with the calculated value.
The magnitude of the resonance energy, to the nearest integer, is \( 98 \, \text{kJ mol}^{-1} \).
From the given following (A to D) cyclic structures, those which will not react with Tollen's reagent are : 
Compound 'P' undergoes the following sequence of reactions : (i) NH₃ (ii) $\Delta$ $\rightarrow$ Q (i) KOH, Br₂ (ii) CHCl₃, KOH (alc), $\Delta$ $\rightarrow$ NC-CH₃. 'P' is : 

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
