\[ (4, 4\sqrt{3}) \text{ lies on } y^2 = 4ax \] \[ \Rightarrow 48 = 4a \cdot 4 \] \[ 4a = 12 \] \[ \Rightarrow y^2 = 12x \text{ is the equation of the parabola.} \] Now, the parameter for point \( P \) is \( t_1 = \frac{2}{\sqrt{3}} \). Therefore, the parameters for point \( Q \) are \( t_2 = -\frac{\sqrt{3}}{2} \), which gives the coordinates of \( Q \) as \( \left( \frac{9}{4}, -3\sqrt{3} \right) \). \textbf{Area of trapezium PQNM:} \[ \text{Area} = \frac{1}{2} \times MN \times (PM + QN) \] \[ = \frac{1}{2} \times MN \times (PS + QS) \] \[ = \frac{1}{2} \times MN \times PQ \] \[ = \frac{1}{2} \times 7\sqrt{3} \times \frac{49}{4} \] \[ = \frac{343\sqrt{3}}{8}\]
Two parabolas have the same focus $(4, 3)$ and their directrices are the $x$-axis and the $y$-axis, respectively. If these parabolas intersect at the points $A$ and $B$, then $(AB)^2$ is equal to:
Let the focal chord PQ of the parabola $ y^2 = 4x $ make an angle of $ 60^\circ $ with the positive x-axis, where P lies in the first quadrant. If the circle, whose one diameter is PS, $ S $ being the focus of the parabola, touches the y-axis at the point $ (0, \alpha) $, then $ 5\alpha^2 $ is equal to:
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
If the domain of the function \( f(x) = \frac{1}{\sqrt{3x + 10 - x^2}} + \frac{1}{\sqrt{x + |x|}} \) is \( (a, b) \), then \( (1 + a)^2 + b^2 \) is equal to: